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Why are cyclones important in SD?

DISADVANTAGES OF LEGACY 
SOLUTIONS:

HE Cyclones:
Low efficiency for fine 
particles

Bag Filters:
Product degradation
Product contamination
Production downtime
Cleaning costs

Cyclones are the best devices 
for high quality product recovery

Because they are the best collectors for first-grade product recovery
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Several constraints are imposed on design

• Wide range of operating conditions:

…- 85ºC < T < 120ºC (negative T for cryogenic micronizers)

…mg/Nm3 < C_in < …kg/Nm3 (highest values occur with jet mill micronizers)

…25 Nm3/h < Q < …150,000 Nm3/h (highest flowrates occur with quasi-pharma applications,
e.g., food ingredients)

• Type of product:

…solid dispersions, inhalable, injectable, microcapsules, tablets’ waste recovery, …
…wide range of densities (non-porous, porous)

This makes it very difficult to have a single cyclone geometry to effectively deal with all cases
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Particle size distributions in SD
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4



Advanced Cyclone Systems | www.acsystems.pt 

How can we design better cyclones?

• The cyclone geometry is defined by 7 
dimensionless ratios of its 8 independent 
dimensions to the cyclone D

• To optimize the geometry becomes a problem 
with 7 degrees of freedom, usually non-linear 
and non-convex

• A 2-level factorial design would require 
building 128 prototypes and a 4-level, 
16384…… 
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Setting up a mathematic problem

Equality constrains

• Relevant design équations (cyclone modeling)
• Particle size distribution and density
• Gas flow rate and dust load
• Gas temperature, density and viscosity

Solution:

Numerically optimized cyclones

Inequality constrains

• Maximum pressure loss
• Saltation velocity
• Geometric constraints

Maximize efficiency, conditioned to: 
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The solution

• We have abandoned pure empiricism and resorted to mathematical 
programming

• Use empiricism only to test and possibly improve the numerical 
solution, found among thousands of virtual prototypes

• But first, one has to understand how cyclones work…cyclones are 
deceptively simple
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Cyclone dynamics

• Effect of operating conditions
(P, T, PSD)

• Effect of multiphase flow
(inlet concentration, particle density and porosity, …)

• Possible clustering and strand formation (Muschelknautz)

• Highly vorticial asymmetric turbulent flow field

• CFD only in 2015 used for global optimization
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How to proceed?

1. Find an appropriate collection model - neglect particle-particle 
interaction

2. Superimpose particle-particle interaction

1. Optimize using a global optimizer - stochastic is slower but much 
better at obtaining the global optimum (Salcedo, 1992)

1. Build and test the numerical solution
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1. Find an appropriate collection model

• The Mothes and Loffler model (1988) seems to best describe the collection 
of particles by cyclones, neglecting particle-particle interaction (Clift et al., 1991)

• Problem: this model depends on the particle turbulent diffusivity, that 
depends on cyclone operating conditions, particle size distribution and 
cyclone geometry (Salcedo and Coelho, 1999)

• With the above approach, the line of Hurricane (HR) cyclones has been 
developed and patented (EP0972572A2)
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! Technology: Hurricane
! Application: Caseinate/Hydrolisate recovery
! Dimension: 92,140 am3/h
! Client: Arla Foods 
! Location: Denmark
! Load into Cyclone: 17 g/Nm3

! Hurricane Efficiency: 98.9-99.3 %
! Alternative technology: Competitor HE cyclone
! Alternative Cyclone Efficiency: 96 %
! Increased Recovered Powder: 320 ton/year
! Reduction in losses: 77%

HR performance in SD applications
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Project 1:
1,500 kg/h (N2) @ 85ºC
Measured on HR: 96%
Competing cyclone: 83%. Reduction in losses: 76%

Project 2:
80 kg/h (N2) @ 65ºC
Measured on HR: 85-95%
Competing cyclone: 80-90%. Reduction in losses: 25-50%

Project 3:
112 kg/h (N2) @ 65ºC
Measured on HR: 84%
Competing cyclone: 60%. Reduction in losses: 60%

Project 4:
1250 kg/h (N2) @ 85ºC
Measured on HR: 99.7%
Competing cyclone: 97%. Reduction in losses: 90%

Some Pharma results on HR performance
from leader API manufacturer
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2. Superimpose particle-particle interaction
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Abnormal capture of fine particles - Why?
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Trajectories

Agglomerate Formation

Schematics of particle-particle collisions
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Clustering (based on Ho and Sommerfeld, 2002)
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Main Model Equations (PACyc)
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Effect of maximum collision (target) diameter
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Effect of inlet concentration

_____ ML (not sensitive to C_in)

7 mg/m3

70 mg/m3

700 mg/m3
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Effect of residence time

REF: rp=1450 kg.m-3

Dmax = 6 µm
tmax = 10 ms
Cin = 700 mg.m-3
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Very good agreement with experimental data
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•We have extended the ML (1988) and Ho and Sommerfeld (2002) 
models to predict fine particle clustering in turbulent cyclone flows

•Fair agreement between experimentally observed grade-efficiency 
curves and those from our model

•Excellent agreement between predicted and experimental global 
collection efficiency

•There is now a theoretical framework on which to base our 
hyphothesis, viz. that clustering inside the cyclone may be 
responsible for the very high collection of fine particles

PACyc conclusions
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3. Optimize with the PACyc model
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The outcome: the Hurricane_MK

Under patent pending (PTC 107312), it shares no more than 2 ratios with
≈ 190 geometries available in the scientific literature or in the marketplace

Projections for difficult API (rp=450 kg/m3):

HR; 57%
HR_MK; 76%

Projections confirmed by client: Reduction in losses 44% 
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Grade-efficiencies including clustering
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Fig. 1 - Particle size distribution reconstructed from 
cyclone (42%), filter (53%) and losses (5%).

Fig. 2 - Grade and global efficiencies from competing cyclone 
(experimental) and predicted by PACYC for HR and HR_MK cyclones

(particle density; 711 kg/m3)

HR130; MK250
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Pilot-scale test conditions

26



Advanced Cyclone Systems | www.acsystems.pt 

Sample – fine fly ash inlet PSD
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Sample – grade efficiencies

Increased concentration
(121, 363, 1231 mg/m3)

PACyc @ 572 mg/m3
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Sample – global efficiencies
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Industrial-scale test conditions
(24x1050mm HR_MK)
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What about CFD? (Sgrott et al., 2015)
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Scaling is no problem
1x10mm hydrocyclone for 
mamalian cell separation

4x3750mm cyclones for ferrous 
industry (600,000 m3/h)
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Conclusions

• Global optimization with a good simulation (PACyc) is a powerfull weapon 
to design better cyclones

• Taylor-made cyclones can be designed to meet specific demands

• Different simulation packages will obtain different ‘optimum’ solutions

• The numerical solutions have to be throughly tested before implementation

• ACS has gained a good confidence on its cyclone design methodology

• Which is the better cyclone will depend partly on the operating conditions 
and mostly on particle properties (density, porosity and particle size 
distribution).
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Thank you

contacts: 
technical@acsystems.pt
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