METR/ENVS 113 Lecture 3: Atmospheric Carbon, Nitrogen and Sulfur Cycles SJSU Fall Semester 2020 Module 1: The Natural, Unpolluted Atmosphere Frank R. Freedman (Course Instructor) ### From Lecture 1: Composition of Atmosphere | Chemical
Species | Concentration | Source | |------------------------|--------------------------------|---| | N ₂ | 78.08% | volcanic, biogenic | | O ₂ | 20.95% | biogenic | | H ₂ O (gas) | up to 4% (avg ~2.5%) | volcanic, evaporation | | Ar | 0.93% | radiogenic | | CO ₂ | 0.037% (370 ppm _v) | volcanic, biogenic, anthropogenic | | Ne | 18 ppm _v | volcanic (possibly) | | He | 5.2 ppm _v | radiogenic | | Kr | 1 ppm _v | radiogenic | | со | 50 – 200 ppm _v | biogenic, anthropogenic,
photochemical | | CH ₄ | 1.7 ppm _v | biogenic, anthropogenic | | NMHC | 5 – 20 ppb _v | biogenic, anthropogenic,
photochemical | | CH₂O | 0.1 ppb _v | photochemical | | N ₂ O | 310 ppb _v | biogenic, anthropogenic | | NH ₃ | 0 – 0.5 ppb _v | biogenic, anthropogenic | | NO _x | 0 – 0.5 ppb _v | biogenic, anthropogenic,
lightning | | ocs | 0.5 ppb _v | volcanic, biogenic, anthropogenic | | H ₂ S | 0 – 0.5 ppb _v | biogenic, anthropogenic | | SO ₂ | 0.01 – 1 ppb _v | volcanic, anthropogenic,
photochemical | | DMS | 0.01 – 0.1 ppb _v | biogenic | Nitrogen (N_2) and Oxygen (O_2): 99% of Dry Atmosphere Water Vapor (H_2O): 1 – 4% Carbon Dioxide (CO₂) – Greenhouse Gas (GHG) Ar, Ne, He, Kr – "Inert Gases" (non-reactive) ➤ Carbon Monoxide (CO) – From combustion, air pollutant Methane (CH₄) − Strong GHG "Non-Methane" Hydrocarbons (NMHC); a class of air pollutants → Ammonia (NH₃) – An air pollutant, industry & agriculture Nitrogen Oxides (NO_x) – From combustion, an air pollutant → Hydrogen Sulfide (H₂S) – An air pollutant, rotten egg smell ➤ Sulfur Dioxide (SO₂) – From coal combustion, an air pollutant ### Nitrogen Dioxide (NO₂) NO₂ absorbs violet/blue sunlight, remaining colors filter through ... brownish ### A natural source of NO2: Lightning Strokes (1995 – 2011, flashes per square km per year) #### Outline - Nitrogen Cycle - Sulfur Cycle - Carbon Cycle - Natural, Background Concentration Levels (absent air pollution) ## Nitrogen Cycle #### Soil / Earth / Plants ("Fixated" nitrogen, bio-available) (nitric acid (HNO3), ammonia (NH3), nitrites, nitrates, ammonium ions for plant uptake #### Nitrogen Fixation (2) (Fixated Nitrogen -> Nitrogen Ionic Compounds for Plant Uptake) (NO2 & HNO3 -> Nitrites, Nitrates, Ammonium) # Sulfur Cycle #### Formation of sulfate particles ## Carbon Cycle #### **Anthropogenic** **Fossil Fuel Combustion** - Carbon released to air mainly as Carbon Dioxide CO2 - Other compounds: - Carbon Monoxide (CO) - Smoke Particles - Hydrocarbon Gases Earth, Oceans, Plants (Main repository of carbon) Fossils and fossil fuels Oceanic Removal ### Natural Background Concentrations in Air (Current-Day, remote Areas ... away from major air pollution sources) | Pollutant | Natural
Background
Concentrations | Source | |-------------------------------------|---|--| | Carbon Dioxide (CO ₂) | 410 ppm | Mauna Loa (Hawaii) https://www.esrl.noaa.gov/gmd/ccgg/trends/ | | Carbon Monoxide (CO) | 50 – 120 ppb | http://www.euro.who.int/data/assets/pdf_file/0020/1 23059/AQG2ndEd_5_5carbonmonoxide.PDF | | Nitrogen Dioxide (NO ₂) | 0.2 – 5 ppb | http://www.euro.who.int/data/assets/pdf_file/0017/1 23083/AQG2ndEd_7_1nitrogendioxide.pdf | | Sulfur Dioxide (SO ₂) | < 1 ppb | http://www.temis.nl/products/so2.html | and biomass decay releases CO2 to air. https://www.esrl.noaa.gov/gmd/ccgg/trends/