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Abstract: The following chapter reports a review of different stochastic and statistical modelling 
approaches, and the results obtained by their application to actual case studies both in urban and 
in industrial areas. The assessment of the results, in terms of daily and hourly forecast 
performance indexes and statistical indicators, is presented, compared and discussed. The 
structure of the chapter is the following. After a preliminary section summarizing the most 
significant stochastic and statistical modelling techniques (Section 1), some literature results are 
reported in Section 2. A more detailed mathematical description of the main techniques 
considered for air quality modelling is given in Section 3. Section 4 gives guidelines on how to 
build a model for air quality forecast and evaluate its performances. Some case studies concerning 
the modelling of tropospheric ozone concentrations, both in urban and industrial areas, are given 
in Section 5. In Section 6 the application of the selected techniques to the implementation of an 
operational decision support system (DSS) is described. Also, the performance of the system for 
two different metropolitan areas in the Northern part of Italy (namely Brescia and Milan) is 
evaluated. Finally, a short survey of the available software packages to implement the modelling 
techniques described is given in Appendix. 
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1 Introduction 
 
Stochastic and statistical models are based on semi-empirical relationships 
between available data and measurements. The distinction between stochastic and 
statistical models is not always clear in literature since these models share several 
common features. Usually models are referred to as stochastic when the time 
variability is taken into account explicitly, and they are referred to as statistical if 
based on the use of some stationary statistical approaches (such as the clustering 
techniques or the Bayesian inference mechanism).  
 
Models taking uncertainty into account, instead of deterministic ones, do not aim 
to describe the level of pollution as a phenomenology-driven, cause-effect 
problem; instead, their identification is based on the direct use of air quality 
measurements. In particular, statistical models are generally useful when the 
information available from measured concentration trends is more relevant than 
the one obtained from the deterministic analyses. The use of statistical models 
may also be encouraged by the presence of a significant amount of data, recorded 
by several monitoring networks, in the territory of interest. 
 
Some general information about basic statistical and stochastic models for air 
pollution data is given in Gilbert (1987) and Zannetti (1990). More recent 
techniques are described by Finzi et al. (2001) and Jorquera et al. (2004).  
 
In the development of such models, measurements of pollutants and related 
meteorological variables have been considered as time series and analysed by 
means of a wide variety of methods, including:  

• spectral analysis 
• component approach (trend + seasonal + residuals) 
• regression analysis  
• trend analysis  
• clustering analysis 
• principal component analysis 
• hybrid models 
• black-box ARIMA models  
• grey-box (non linear and non stationary) models  
• Bayesian models 

 
More recently other statistical approaches have been published generically 
referenced as AI (Artificial Intelligence) or Soft-computing techniques, including:  

• neural models  
• fuzzy models  
• neuro-fuzzy models  

 
Statistical modelling approaches can be used in a black box mode (i.e., pollutant 
concentration time series analysed without any phenomenological information), 
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to evaluate their intrinsic statistical variations without attempting any physical 
explanation. Otherwise, they can be used in a grey box mode, in which other 
information (such as meteorological or emission variables, seasonal cycles) may 
be taken into account explicitly or implicitly, although always in an uncertain 
environment. 
 
In the following each model class will be shortly referenced, pointing out its main 
features with respect to a possible use as air pollutant concentrations predictor. 
 
• Spectral analysis (Jenkins and Watts, 1968) allows the identification of 

cycles in meteorological and air quality time series measurements. Early 
applications of spectral analysis of SO2 concentration were carried out by 
Tilley and McBean (1973) and Trivikrama et al. (1976). They showed the 
existence of semi-diurnal, diurnal and three-and-half-day period oscillations 
in SO2 and wind time series recorded in the study area (Northern USA). 
Semidiurnal cycles were interpreted in terms of local phenomena, such as sea 
breezes. Longer periods seem to be induced by synoptic weather variations. 
More recently, spectral analysis has been applied by Schlink et al. (1997) for 
analysing SO2 data recorded at Leipzig in the years 1980-1993. 

 
• Component models are based on a spectral decomposition of time series into 

a trend component, a periodic component, and a residual component. Each 
component shows a peculiar behaviour; in particular, trend one is very smooth 
and slowly varying with fixed periods for the cyclic components. Each 
component is predicted on the basis of its features and the final forecast is a 
combination of all of them (Schlink et al., 1997). In spectral decomposition, 
low-pass and band-pass filters are used to quantify the components. Young et 
al. (1991) gave very convenient and flexible filtering algorithms based on the 
Kalman filter. 

 
• Regression analysis is a particular type of stationary multiple input time-

series analysis, in which meteorological measurements are statistically related 
to air quality concentrations by means of a linear model. 

 
• Trend analysis allows evidencing and eliminating any a priori significant 

trend or seasonal variation in time series (see contribution by Buishand et al., 
1988). 

 
• Clustering analysis allows finding a set of a priori unknown data categories 

(or clusters), based on available set elements and observations. Formally, a 
clustering process orders observations in clusters (i.e., subsets with high 
degree of association among members of the same group and low among 
members of different groups). Clustering analysis for modelling pollution data 
has been considered for instance by Sanchez et al. (1990) and Huang (1992). 
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• Principal component analysis allows reduction of multivariate data through 
transformation of the original variables into a new set of uncorrelated ones, 
progressively accounting for decreasing proportions of explained variance in 
the data. Aim of this methodology is to reduce the dimensionality of the 
model. The new variables (principal components), are defined as linear 
functions of the original ones. If a limited number of components account for 
a large percentage of explained variance in the observations, they can be used 
to simplify the subsequent analysis. Principal components have been used by 
many authors (e.g., Lins, 1987). 

 
• Hybrid models, mainly the ones based on Kalman filters, have been 

frequently used for updating the forecast capabilities of a deterministic 
predictor based on the availability of real-time measurement of pollutants. For 
instance, the application proposed by Melli et al. (1981) suggested this 
approach for real-time control of SO2 emissions in the industrial area of Porto 
Marghera, which is located in the Venetian lagoon region (Italy). 

 
• Black-box ARIMA and ARMAX models (Box and Jenkins, 1970, 1976; 

Box et al., 1994) have been considered as one of the most cost-effective 
approaches for time series analysis. Many authors have been inspired to apply 
this technique in developing pollutant forecast models for SO2 time series as 
well as for other pollutants such as ozone, NOx, etc. (see Finzi et al., 1983).  

 
• Grey-box models are extended ARMAX (Auto Regressive Moving Average 

with eXogenous inputs) models, which allow the user to take into account the 
non-stationarity of the process through parameters depending on time-varying 
classes in order to treat the complexity of air pollution dynamics (a first 
example of application to SO2 urban pollution forecast is illustrated in Finzi 
and Tebaldi, 1982).  

 
• The neural approach consists of using artificial neural networks (ANN) to 

identify air quality prediction models. Neural networks are virtually parallel 
computational architecture based on the emulation of the human brain. 
Applications of similar computational architectures to the prediction of SO2 
concentration have been described by Boznar et al. (1993), Arena et al. 
(1996), Finzi et al. (1998), and Nunnari et al. (2001). 

 
• The fuzzy approach aims to describe the behaviour of dynamic systems by 

using linguistic representation (i.e., the system model is represented by a set 
of rules, the rule base, in the “if…then” form). A similar methodology has 
been proposed to implement NARX (Non-linear Auto Regressive with 
eXogenous inputs) models of pollutant time series (e.g., Nunnari et al., 1998; 
Nunnari, 2000), allowing an easily understandable way to model complex air 
quality phenomena. 
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• In neuro-fuzzy systems, neural networks are used to tune the membership 
functions of the fuzzy system and to automatically extract fuzzy rules from 
numerical data (see Finzi and Volta, 2000). 

 
• Bayesian models are recent techniques applied to forecast critical pollution 

episodes. Some contributions referring to this topic are reported by Maffeis 
(1999), Cossentino et al. (2003), and Nunnari and Cannavò (2004). The 
peculiarity of this approach is that the prediction problem is formalised in 
terms of a Bayesian Network (BN). Deep a priori knowledge about the model 
structure is not required to build a BN; instead, heuristic knowledge that is 
usually available can easily be taken into account. Bayesian models can work 
even in the presence of partially missing input information. When some input 
values are missing, they can simply be neglected or replaced by surrogates 
such as the corresponding probability distributions. Finally, BNs can operate 
in the so-called diagnostic mode in order to infer the causes of poor air 
quality. 

 
 
2 Some Literature Results 
 
Some of the most significant results, which appeared in the literature referred 
above, are shortly reported in the following: they mainly concern the application 
of statistical and stochastic models to predict critical pollutant concentrations 
both in industrial and urban areas. 
 
Regression analysis was employed by Bringfelt (1971) to assess significant 
variables driving SO2 concentrations in Central Stockholm. One of the aims of 
the study was to set up a warning system for SO2 episodes based on the forecast 
of atmospheric mixing layer height and wind speed. SO2 mean daily 
concentrations, averaged over four monitoring sites in Central Stockholm, were 
compared with temperature, wind speed and mixing height by means of a 
multiple regression analyses for the winter periods of 1967-1969. Different 
methods to extract the best meteorological predictors from routine weather data 
were compared. As temperature predictor, the difference of mean daily 
temperature monitored at the local airport was used when below a threshold of 
25°C. The mixing height was estimated on the basis of night and day radio 
sounding measures (01 and 13 hours) and the minimum temperature in the city. 
The multiple correlation coefficient came out quite high (0.84). The daily SO2 
levels were predicted with a standard error of about 25%.  
 
A Kalman filtering approach was proposed by Melli et al. (1981) for modelling 
SO2 emissions in the Venetian Lagoon industrial area (Northern Italy) with the 
aim of implementing a real time system for emission control; the authors 
considered real-time emission control as an air quality strategy alternative to 
permanent emission reduction. They proposed an emission control scheme 
characterised by the following steps:  
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• Collect current concentration and meteorological measurements from 
monitoring networks. 

• Forecast future values of relevant local meteorological variables, by 
means of simple stochastic mathematical predictors. 

• Predict future concentrations on the basis of information from current 
concentration values, forecast meteorology and scheduled emissions. The 
predictor model is based on a complex forecast algorithm (Kalman 
predictor) derived from the “stochastic version” of the numerical solution 
of the advection-diffusion partial differential equation.  

• If future concentrations exceed some reference level, the scheduled 
emissions are reduced. The assumed control policy consists of mixing fuel 
with a cleaner one, under the constraint of maintaining the production 
scheduled by each polluting plant.  

 
The results of the case study are supplied as cost-effectiveness curves (cost versus 
effectiveness of the control action). The authors showed that real-time emission 
control was economically cheaper and technically possible.  
 
Finzi and Tebaldi (1982) applied a non-stationary and non-linear grey–box auto 
regressive model with exogenous inputs to predict daily SO2 average 
concentration in Milan urban area (Northern Italy). This city is now using mostly 
methane or low sulphur fuels for domestic heating, but at the time when the study 
was performed (late 1970s), there were serious problems with SO2 pollution due 
to low quality fuels widely used for domestic heating. Data analysis carried out on 
historical time series allowed the authors to evidence that the urban pollution 
level was particularly high during cold season with anti-cyclonic synoptic 
conditions, low ambient temperature, and low wind. So they implemented a 
forecast model for daily SO2 DAP (Dosage Area Product) computed over Milan 
urban area. In particular, two different meteorological categories were defined 
respectively, corresponding to cyclonic and anti-cyclonic synoptic regimes over 
Northern Italy; the local wind velocity and temperature were considered as non-
linear exogenous inputs. The model was validated comparing predicted and 
measured data during the winter season of 1975-1976, with fairly good agreement 
mainly during severe critical episodes.  
 
A more complex grey-box model was further applied in a study concerning SO2 
air pollution forecast in Madrid metropolitan area (Hernandez et al., 1983; Finzi 
et al., 1983). In this study the role of meteorological variables in statistical 
pollution forecasting models was highlighted. A comparison was also performed 
between black-box and grey-box models, showing how the use of basic physical 
knowledge of the phenomenology allows a higher cleverness in episodes 
prediction. 
 
Another statistical model to forecast SO2 concentrations in the surroundings of a 
thermal power plant was studied by Brusasca and Finzi (1986) with the purpose 
of emission real-time control. The plant taken as a case study, with a nominal 
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power of 1365 MW, is located at Turbigo (in the Po Valley near the Alps 
Mountains, the Ticino River Natural Park, and not far from the city of Milan) and 
managed by ENEL (the Italian National Electricity Board). The authors 
implemented a Cyclostationary Auto Regressive model (referred also as ARCX 
in the following Sections) to forecast half-hourly and daily mean concentrations 
of SO2 at some hours in advance during the day. Thanks to a recursive 
computation scheme, the prediction of half-hourly average concentrations was 
performed and updated starting from the morning data considered for the study. 
They recorded at 5 stations around the plant (in the range of 5 Km) during the 
cold seasons of 1982/83, 1983/84 and 1984/85. The real-time daily SO2 forecast 
model was compared with a more trivial one, the so-called persistent model; the 
results evidenced that the stochastic predictor performed much better in terms of a 
statistical analysis of the forecast errors, and allowed the power plant managers to 
prevent critical episodes and meet law standards. 
 
Boznar et al. (1993) carried out one of the first studies that appeared in the 
literature concerning a comparison between a deterministic and a neural network 
based approach. They modelled SO2 concentrations due to Slovenian thermal 
power plant emissions and pointed out the difficulties in using deterministic 
models when the terrain is not flat. Moreover, they stressed the fact that also the 
simplest stationary Gaussian model needs several input parameters to work 
properly. Since it is often difficult to get inputs and a reliable parameterisation in 
real time, deterministic models may give unrealistic estimates, mostly based on 
the assumption of a stationary emission and meteorological scenario. 
Alternatively, they proposed a neural network based approach for short-term 
prediction.  
 
Artificial neural networks have also been taken into consideration by Arena et 
al. (1996) to set up a model of SO2 time series monitored in an industrial area 
very close to Siracusa (Sicily). In particular, a short-term prediction (six hours 
ahead) of the SO2 pollutant mean value has been performed. A neural architecture 
was implemented, based essentially on a Multilayer Perceptron devoted to 
predict alarming situations and to estimate the mean pollutant value. The results 
showed that neural network based strategies for short-term prediction of SO2 
levels are promising. 
 
Statistical methods have also been developed by Schlink et al. (1997) to set up an 
advanced smog warning system in central Leipzig (Germany) by modelling 
winter time SO2 concentrations recorded during 1980-1993. The authors 
essentially use a recursive Kalman algorithm, based on a preliminary spectral 
analysis of the SO2 concentration time series; the smog episodes with low 
frequencies and time-dependent power spectra were well represented by the trend 
component alone. This component was therefore investigated in the phase space, 
where it exhibited a typical trajectory feature. One data subset was used to 
identify the model parameters and another was left for validation; the results were 
still not satisfactory. So a modified method was proposed to extrapolate the time-
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dependent spectrum of the trend component, namely a local harmonic 
approximation. This method was tested and compared with simple linear 
extrapolation. It provided a generalization, producing closer correspondence 
between predicted and observed concentration values.  
 
Another study concerning neural network models, applied to SO2 pollution, has 
been reported by Reich et al. (1999). They address the problem of the 
apportionment of a small number of SO2 sources from a data set of ambient 
concentrations. A three layer feed-forward artificial neural network trained with 
a back-propagation algorithm was employed. A subset of hourly meteorological 
conditions and measured concentrations constituted the input patterns to the 
network, which was mainly designed to identify relevant emission parameters of 
unknown sources as outputs. The remaining model data were degraded by adding 
noise to some meteorological parameters and the effectiveness of the method was 
tested. The model was applied to a realistic case where 24 h SO2 concentrations 
were previously measured. Some of the limitations of the artificial neural 
network approach and its capabilities are discussed in this paper.  
 
The role of statistical and stochastic modelling techniques as a practical tool for 
air quality prediction and forecasting has been recognized by the European Union 
in the framework of the Fifth Framework Program funded projects devoted to 
develop and test a variety of advanced statistically based modelling techniques. 
Among these, it is worth to mention the APPETISE project (Air pollution 
episodes: modelling tools for improved smog management, 
http://www.uea.ac.uk/env/appetise/). This work has been carried out over a period of 
two years (Greig et al, 2000) by a consortium of 9 institutions from 5 different 
European Countries. The project has focused essentially on four key pollutants: 
nitrogen oxides, particulates, ground level ozone and sulphur dioxide. 
 
A significant number of statistical modelling techniques were applied to model 
pollutant time series of a rich database representing different meteorological and 
emission conditions throughout Europe. The performances of the considered 
techniques were inter-compared rigorously. The variety of inter-compared 
techniques together with the different locations of the area considered, and 
different kind of sites (i.e., urban, suburban, rural, industrial) and targets make the 
results of this inter-comparison exercise more general and interesting. The main 
results of the project have been published by Schlink et al. (2003) for ground 
level O3, by Kukkonen et al. (2003) for NO2 and PM10, and by Nunnari et al. 
(2004) for SO2. 
 
In Section 5, grey-box models, neural, fuzzy and neuro-fuzzy networks will be 
taken into consideration and applied to other recent real case studies, and their 
performance will be compared as real time predictors for atmospheric urban 
pollutant concentrations. As introduced above, all the approaches are based on the 
analysis of time series of pollutant concentration measures recorded by air quality 
control networks. The first methodology requires a minimum physical 

http://www.uea.ac.uk/env/appetise/
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understanding of the phenomenon in order to drive the model to the description of 
the non-linearity and non-stationarity of the process by means of a limited 
number of parameters, while the other ones can be applied by a non-expert user 
by means of largely automatic procedures (black-box approach). 
 
 
3 Time Series Modelling 
 
Techniques for modelling time series can be roughly classified as linear and non-
linear.  
 
3.1 Linear Techniques 
 
Linear techniques represent the simplest way to model statistical time series. 
Despite the fact that the largest part of natural phenomena are non-linear (e.g., 
Kantz and Schreiber, 1997), several ideas can be generalised from the theory of 
linear modelling techniques. 
 
Until recently, linear multi-variate methods have been considered to be one of the 
most cost-effective approaches for time series analysis. Many authors have been 
inspired to apply these techniques, after some appropriate modifications, in 
developing pollutant forecasting models. These techniques have been applied to 
modelling SO2 time series as well as other pollutants such as O3, NOx etc. The 
original Box-Jenkins approach (Box and Jenkins, 1976; Box et al., 1994) has been 
adapted by some authors in order to treat the complexity of air pollution data such 
as non-stationarity (e.g., Finzi et al., 1998). 
 
The basic structure of linear techniques is outlined as follows. Let us denote a 
discrete time random process by {y(t)} and a discrete purely random process with 
zero mean and variance σ2 by {e(t)}. A process {y(t)} is said to be a moving 
average process of order q, and indicated as MA(q) if  
 

)()...1()(...)1()()( 11 teBBqtetetety q
qq γγγγ +++=−++−+=   (1) 

 
where γi are constants and B is the backward shift operator. Similarly a process is 
said to be an autoregressive process of order p, and indicated as AR(p) if  
 

)()(...)1()( 1 teptytyty p +−++−= αα    (2) 
 
where αi are constants and |α1| < 1.  
 
A very simple AR model is the so-called persistent model (i.e., y(t) = y(t-1), 
tomorrow equals today) that is often considered as a reference model during inter-
comparison exercises. 
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By combining the AR and the MA structures, it is possible to obtain an ARMA 
process of order (p,q) as follows: 
 

)(...)1()()(...)1()( 11 qteteteptytyty qp −++−++−++−= γγαα  (3) 
 

Such structure is sometimes useful to model linear stationary univariate time 
series. To handle linear non-stationary time series, the ARMA model can be 
appropriately extended in order to obtain the ARIMA model (Box and Jenkins, 
1970). An ARIMA(p, d, q) model is a particular ARMA model where the original 
time series {y(t)} is substituted by the d-times differenced series {Bd y(t)}. 
 
Multivariate time series (i.e., time series in which one variable is related to 
others), referred to as exogenous variables (or inputs), can be modelled by using 
the ARMAX models. As an example, if we want to model the ozone time series 
recorded at a given point, we can try to use as exogenous variables (the solar 
radiation and the concentration of Nitrogen Dioxide, NO2) since it is known that 
these variables play a role in the ozone cycle. The structure of the ARMAX 
process is the following: 
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Equation (4) has been considered in the presence of an individual exogenous 
variable u(t), also referred to as the input variable, but the generalization to the 
case of a generic number of exogenous variables is trivial. Furthermore, the 
above-mentioned structure can be generalised to the case when the stochastic 
variables y(t) and u(t) are vectors. ARMAX models lead to a simpler but quite 
useful representation. The ARX model is given by: 
 

)()(...)1()(...)1()( 11 tertutuptytyty rp +−++−+−++−= ββαα  (5) 
 
Identification of parameters of ARX models (i.e., the determination of constants 
αi and βi from experimental data), can be obtained by the standard Least Square 
(LS) method. Identification of ARMAX models can be performed instead using 
the Generalized Least Square (GLS) approach (e.g., Soderstrom and Stoica, 
1989). 
 
Finzi et al. (1982) proposed a particular kind of ARMAX models referred to as 
cyclo-stationary or grey-box ARMAX model that are able to deal with particular 
(cyclic) non-stationary phenomena that often affect pollution time series. The 
structure of a cyclo-stationary ARMAX model is as follows: 
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where s(t) is a properly defined category at time t and kj is the lag time. These 
kinds of models can be useful when the process to be modelled is affected by 
some underlying periodic (daily, weekly, seasonal or yearly) components. 
 
3.2 Non-Linear Techniques 
 
Linear methods allow interpreting all the regular structure in a data set such as 
dominant frequencies. However, the linear paradigm, which can be roughly stated 
as “small causes lead to small effects”, is not always true for natural phenomena. 
This can be explained by bearing in mind that linear differential equations can 
only lead to exponentially growing or periodically oscillating solutions. This 
means that all irregular behaviours of a given system must be attributed to some 
random external input. However, it is known from the System Theory that random 
inputs are not the only ones responsible for irregular behaviours of the system 
output; nonlinearities or chaos can produce very irregular data even with purely 
deterministic equation. So, it is better to try to explain irregularities in a given 
time series with both the presence of random inputs and nonlinearities (Kantz and 
Schreiber, 1997). The literature about non-linear modelling techniques is very 
rich and we will deal with the most widely considered ones here. 
 
3.2.1 NARX Models 
 
A general way to represent nonlinear systems is the NARX (Non-linear Auto 
Regressive with eXogenous inputs) representation, which can be considered as a 
generalization of the ARX model: 
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Here f is an unknown non-linear function, y(t) is the system output, u1, u2, …, un 
are related input variables (e.g., meteorological and/or emission variables), and 
e(t) is a random term. In expression (7) the variable X is expressed as: 
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in order to indicate the data vector, also referred to as the model input pattern. 
 
Several of the most powerful time series modern techniques - such as the Multi-
layer Perceptron (MLP) artificial neural networks, the Fuzzy and Neuro-Fuzzy 



408  Air Quality Modeling – Vol. II 

techniques - can be considered for approximating the unknown function f, given 
an appropriate set of measured data, as explained below. 
 
3.2.1.1 The MLP Modelling Technique 
 
Multi-layer Perceptron (MLP) Neural Networks are parallel computational 
architectures where their structure is based on the emulation of the human brain. 
If suitably “trained” using a set of examples, they can “learn”; that is, they can 
extract the link between the input data and the corresponding output data 
(Lippmann, 1987). MLPs can thus be used to solve a number of problems of 
classification, and more generally, black-box identification, in which a priori 
knowledge of the model is not needed (Chen and Billings, 1992). Moreover, 
operations are relatively simple and can be performed quite systematically; the 
learning phase is entrusted to special optimisation algorithms such as the back-
propagation algorithm (Rumelhart et al., 1986). Properties of MLPs in non-linear 
system identification are described in Sioberg et al. (1994). From the 
mathematical point of view, MLPs perform automatic search of models in the 
class of NARX structure. It has to be stressed that such a modelling approach can 
be equally applicable for both scalar and vector sequences. The use of this non-
linear auto-regression can be justified as follows. For a wide class of deterministic 
systems, it can be assumed a diffeomorfism (i.e., a one-to-one differential 
mapping) between a finite window of the time series [y(t-1), ... y(t-p), u(t-1), ... 
u(t-n)] and the underlying state of the dynamic system which gives rise to the 
time series. This implies the existence of the non-linear auto-regression of the 
form (7). The MLP neural network thus forms an approximation of the ideal 
function f(⋅). Furthermore, it has been shown (Cybenko, 1989) that a feed-forward 
neural network, with an arbitrary number of neurons in the hidden layer, can 
approximate any uniformly continuous function with an arbitrary degree of 
accuracy. 
 
The internal model representation by using a Multi-layer Perceptron structure is 
based on the expression: 
 

)()( iii BUWUN +⋅Γ=     (9) 
 
which is used in a recursive frame. The meaning of the symbols is as follows: 

U = output of the (i-1)th layer 
Wi = weight matrix associated to the ith layer 
Bi = bias vector corresponding to the ith layer 
Γ = an appropriate activation function 

 
Formally, the output of the neural network can be expressed as follows: 
 

))))((((()( 11 UWWWUFY nn ⋅ΓΓΓ== − …    (10) 
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In the expression above, the biases have not been reported for sake of simplicity. 
Since a MLP with one hidden layer can solve the same class of problems that can 
be solved by using MLP with more than one hidden layer, below we will refer to 
MLP with one hidden layer only. Under this hypothesis, expression (10) assumes 
the following simpler form: 
 

))((()( 2112 BBUWWUFY ++⋅ΓΓ==    (11) 
 
MLPs have been considered in the literature for air pollution time series 
modelling by several authors such as Boznar et al. (1993), Arena et al. (1996), 
Nunnari et al. (1998), Gardner and Dorling (1998, 1999), Schlink et al. (2003), 
Kukkonen et al. (2003), and Nunnari et al. (2004).  
 
A problem with using MLP trained by the traditional back-propagation algorithm 
is, apart from the often excessively low speed of convergence (e.g., Sarkar, 1995), 
the possibility of obtaining configurations of the weights corresponding to a local 
minimum. The literature reports numerous variations of this algorithm aimed at 
improving the performance (see Gori and Tesi, 1992). Another problem using 
MLP is the choice of the most appropriate number of neuron in the hidden layers. 
A small number of hidden neurons yields low accuracy models; on the other 
hand, a large number produces the problem of over fitting, which means poor 
generalization capabilities of the model. Since there are no a priori formulas to  
compute the best number of hidden neurons (Barron, 1993), this is usually done 
by a trial and error approach by searching for a trade-off between accuracy and 
generalization capabilities of new input data. In order to correctly evaluate the 
generalisation capabilities of MLP trained by using the traditional back-
propagation (BP) algorithm, the so-called Early Stopping approach (Sjoberg and 
Ljung, 1995) can be considered.  
 
Despite the fact that BP algorithm is the most widely considered neural 
networks for training MLP, others algorithms are available such as the conjugate 
gradient optimisation approach. Moreover, the traditional Sum of Squares Error 
(SSE) that is the standard cost function minimised by the BP algorithm is 
sometimes replaced by other kinds of cost function. As an example, Dorling et al. 
(2003) proposed to use the maximum likelihood cost functions to model air 
quality data. 
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3.2.1.2 The Fuzzy Modelling Technique 
 
The fuzzy set theory represents a different approach to dealing with uncertainty 
than the traditional probabilistic and statistical methods. The essential feature of 
the fuzzy logic is the concept of membership function, which ranges between 0 
and 1 and represents the degree of membership of an individual element to a 
given set, referred to as a fuzzy set. From the seminal paper by Zadeh (1965), a 
lot of work has been carried out in the field of fuzzy logic, and it is beyond the 
purpose of this chapter to deal with the huge amount of theoretical and practical 
aspects of this theory. Here, we only deal with the problem of approximating a 
NARX model of the form (7) by using a fuzzy rule base of the form: 
 

),1()1(

)(,,)()(

)(,,)()(

)1(,,)1()(:

,2,1,

1,12,11,1

,2,1,

kiBisty

AistuandAistuandAistu

andAistuandAistuandAistu

andAisntyandAistyandAistyifR

i

piqnyiqnnyiq

nnyinyinyi

nyiyiii

…

…
"

…

…

…

=+

+−−

+++

+++

    (12) 

 
where Ai,j (j= 1,…p) and Bi (i=1,…K) are fuzzy sets. Particularly in the case 
considered below, the consequent fuzzy sets Bi are assumed to be singletons (i.e., 
real numbers).  
 
The fuzzy modelling approach consists of the following steps:  

1. Positioning of the membership functions Ai,j in their respective universe of 
discourse. This step is based on the determination of the matrix centres of 
the input data clusters by using one of the clustering algorithms described 
in the subsequent Section 3.2.6, or it can be simply performed on a trial 
and error basis. The shape of the membership function must also be 
selected among a large variety (e.g., trapezoidal, Gaussian, etc.)  

2. Generation of all possible rules according with the input patterns available  
3. Pruning of the unnecessary rules; this step is based on approximating the 

input patterns with the closest cluster centre  
4. Determination of the consequent part of each rule; this is done by using an 

appropriate optimisation approach. It can be demonstrated that for rules of 
the form (12), the consequent part of each rule can be also obtained by 
using the least square algorithm (e.g., Nunnari, 2000)  

5. Further pruning phase (last step is optional) according to a statistical 
criterion which takes into account the number of activation of each rule 

 
More details about this algorithm for modelling air pollution time series can be 
found in (Nunnari, 2000). A quite similar approach, based on the use of the Fuzzy 
C-means clustering algorithm, is described in Section 3.2.6. 
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3.2.1.3 The Neuro-Fuzzy Technique 
 
In neuro-fuzzy systems, neural networks are used to tune the membership 
functions of the fuzzy system and to automatically extract fuzzy rules from 
numerical data (Shing and Jang, 1993). The internal structure of a neuro-fuzzy 
network is illustrated in Figure 1. The nodes of the first layer represent the crisp 
inputs. The activation functions of the second layer nodes are Gaussian and act as 
membership functions. Each neuron of the third layer acts as a rule node so that 
this layer provides the fuzzy rule base. The output of this layer determines the 
activation level at the output memberships. As ordinary neural nets, the neuro-
fuzzy one learns on a training data set, tuning membership functions and rules by 
means of a back-propagation algorithm. 
 
When xi is the ith node in layer A, Oj

L is the jth output of generic layer L, and Wij
L 

is the weight of the link between jth neuron at layer L+1 and ith neuron at layer L, 
each layer output can be described as follows: 
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Figure 1. Neuro-fuzzy network architecture. 

 
3.2.1.4 The Wavelet based Modelling Technique 
 
Wavelet functions have been reported in the literature due to their capability of 
modelling transient phenomena occurring in particular geophysical time series 
(e.g., earthquakes). Some insights on the use of wavelets for system identification 
improvements can be found in Zhang (1997). A strategy, based on wavelets for 
modelling air pollution data, was proposed by Nunnari (2003). The mentioned 
approach can be summarised as follows. Let ψ(t) be a basic wavelet function and 
let s (s ≠ 0) and u be real numbers; the family of wavelets corresponding to ψ(t) is  
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Here s represents the dilatation and u gives the translation. With reference to 
expressions (7) and (8), let us introduce the scalar quantities tj (j=1,…, M) as a 
map between the vectorial argument of expression (7) and the scalar argument t of 
the generic j-th wavelet function (13): 
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where Aj and Uj are appropriate vectors of unknown parameters. The WAG 
approach consists of approximating y(t+1) in expression (7) as: 
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In the WAG approach, the number of approximating wavelet functions M is 
obtained by a trial and error iterative procedure, a trade-off between accuracy 
and generalisation capabilities, while the remaining model parameters, namely 
Aj,, Uj, sj, and wj (j=1, M) are searched by using a genetic algorithm (GA) 
optimisation approach (Holland, 1975). The reason for using GAs is that they are 
capable of finding the global minimum of a function with many variables, 
overcoming the limitation of typical gradient-based optimisation techniques 
(Goldberg, 1989). Even though by using a search algorithm, such as GAs, the 
modeller can define very complicated cost functions, good results can still be 
obtained by the traditional minimisation of the sum of error squares. 
 
3.2.2 The Generalized Additive Modelling Technique 
 
The Generalised Additive Model (GAM) uses smoothing techniques, such as 
locally weighted regression, to identify and represent possible non-linear 
relationships between the output and the model inputs (i.e., the explanatory 
variables).  
 
This approach represents an alternative to considering polynomial terms or 
searching for the appropriate transformations of both output and input variables. 
By using these models, the link function of the expected output value variable is 
modelled as a sum of a number of smooth functions of the explanatory variables 
as expressed by (16) rather than in terms of explanatory variables themselves: 
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GAM is discussed in Breiman and Friedman (1985), Cleveland (1979), Davis et 
al. (1998), Davis and Speckman (1999), Hastie and Tibshirani (1986, 1987), and 
Wood (2000). Applying the GAM technique, the non-linear functions f1 in 
equation (16) are specified in a nonparametric fashion by means of scatterplot 
smoothers (i.e., weighted average of neighbouring observations). Cubic or fourth 
order splines functions were applied for instance by Schlink et al. (2003) to model 
tropospheric ozone and SO2 time series (Nunnari et al., 2004)  
 
3.2.3 Local Prediction in Phase Space 
 
Local Prediction in Phase Space is a method for non-linear time series analysis, 
which is based on the paradigm of deterministic chaos (Kaplan and Glass, 1995; 
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Abarbanel, 1996; Kantz and Schreiber, 1997). The chaos theory offers completely 
new concepts and algorithms to model irregular behaviour and anomalies in 
systems, which do not seem to be inherently stochastic. An original reference on 
phase space embedding is Takens (1981). 
 
The first step of the Local Prediction in Phase Space (LPH) technique is phase 
space embedding of the observed pollution data y(t). This is done by forming 
delay vectors  
 

Ttydtydmtyty ))(),(),...,)1((()( −−−=
G    (17) 

 
with m representing the embedding dimension and d representing the delay time. 
Methods for estimating the optimal embedding parameters are discussed by 
Grassberger and Procaccia (1983), Kennel et al. (1992), and Sugihara and May 
(1990). 
 
The second step is the local non-parametric extrapolation in the phase space, 
beginning at a starting point )(tyK . In a neighbourhood ( )( )tyU z

K of this point, all 
points and their tracks are considered. According to Equation (18), the forecast is 
calculated as the average of these tracks 
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A peculiarity of the LPH technique is that it requires time series without missing 
values. Application of this technique for modelling O3 and SO2 time series were 
considered by Schlink et al. (2003). 
 
3.2.4 The Kalman Filtering Approach 
 
The Kalman filtering approach is based on the assumption that the linearization 
and discretization - of the differential equation that describes the concentration of 
a given pollutant - are described by a system of equations of the form (19): 
 

)()()(
)()()()1(

tZEtXDtY
tVCtUBtXAtX

⋅+⋅=
⋅+⋅+⋅=+

   (19) 

 
where A, B, C, D and E are matrices of parameters of appropriate dimensions, X(t) 
and U(t) are the state and input vectors respectively, and V(t) and Z(t) are purely 
random signals with zero mean and known covariance. The first part of Equation 
(19) is referred to as the state equation since it allows computation of the system 
state at time t+1 on the basis of information available up to time t. The second 
equation is referred to as the output (or the observation equation), and reflects the 
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fact that the state of the system is considered as an internal variable (i.e., it may 
not be directly observed, but it can be computed based on an appropriate 
measurement process) involving the variables Y(t) and U(t). The presence of the 
random variables, V(t) and Z(t), is the way to represent the incomplete knowledge 
of the process. Interested readers can find details about methods available to 
estimate the unknown parameters of the model (19) in several books, including 
Brown and Hwang (1996). A comprehensive framework for analysing time series 
of environmental data, based on the use of recursive Kalman filters, was proposed 
by Young et al. (1991) and further improved by Young et al. (1997) and Young 
(1998). Application of such a methodology has been proposed by Schlink et al. 
(1997) and Ng and Yan (1998). 
 
3.2.5 Clustering Approaches 
 
A statistical model to predict episodes of poor air quality can be formalized as a 
classification problem. To understand this, it is necessary to bear in mind that 
often we are not interested to know the exact value that will assume the 
concentration of a given pollutant, but rather if the value will belong to a certain 
class. For instance, we might classify air quality in classes such as (excellent, 
good, acceptable, worse, or bad) and we may be interested to forecast the class of 
air quality for tomorrow. Or we might classify the concentration of a given 
pollutant in classes according to threshold levels suggested by actual legislation 
(e.g., the attention level of the alarm level) and we want to know if the 
concentration of a given pollutant will exceed the attention level tomorrow. 
Classification models can be obtained using a large variety of approaches. For 
instance, a traditional MLP neural network can be trained as a classifier to 
forecast if the concentration of a given pollutant will exceed the attention level or 
not, rather than try to predict the exact value. In this case, it would be possible to 
use well-known algorithms such as the back-propagation to find the model 
parameters. However, more appropriately, the classification can be achieved by 
using one of the numerous algorithms proposed in literature, such as the K-means 
developed by MacQueen in 1967 and the Hard C-Means. For a description of 
these algorithms, see Anderberg (1973) and Hartigan (1975), respectively, or the 
good synthesis made by Jorquera et al. (2004). A K-means clustering approach 
was considered by Sanchez et al. (1990), who presented results of a synoptic 
meteorological classification oriented at forecasting particulate matter in the city 
of Valladolid (Spain). Clustering was also used by Huang (1992) to predict air 
quality in the city of Xiamen (China). 
 
The advent of Fuzzy Logic has stimulated the development of other clustering 
algorithms such as the Fuzzy C-Means developed by Dunn (1973), further 
improved by Bezdek (1981). This method is based on minimizing the following 
objective function: 
 



416  Air Quality Modeling – Vol. II 

∞<≤−= ∑∑
= =

mcxuJ ji

N

i

C

j

m
ijm 1,

2

1 1

   (20) 

where m is any real number greater than 1, uij is the degree of membership of xi in 
the cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension 
centre of the cluster, and ||*|| is any norm expressing the similarity between any 
measured data and the centre. The real number m is referred to as the 
fuzzyfication parameter. If m is zero, the clusters are conventional. However, the 
larger the parameter value, the fuzzier the cluster will be. The recommended 
value for m is 2, which also assures convergence of the algorithm.  
 
Fuzzy partitioning is carried out through an iterative optimisation of the objective 
function shown above, with the update of membership uij: 
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and the cluster centres cj. 
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This iteration will stop when:  
 
 { } ε<−+ k
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k
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where ε is a termination criterion (between 0 and 1) and k is the iteration steps. 
This procedure converges to a local minimum or a saddle point of Jm. 
 
3.2.6 Identification of Air Quality Models by Using Fuzzy C-Means 
 
The Fuzzy C-means algorithm can be used to identify non-linear air quality 
models using the approach proposed by Sugeno and Yasukawa (1993). This 
approach allows minimization of the number of rules in the fuzzy rule base thus 
avoiding the drawback of traditional fuzzy model identification, where the 
number of fuzzy rules increases exponentially with the number of inputs. This is 
obtained by partitioning the input universe of discourse based on the Fuzzy C-
means. 
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The method can be stated as follows. Let B represent a fuzzy cluster defined in 
the output variable universe and A the projection of B in the input space. The 
projection of A in the axes of the input variables xj, (i =1,..,p) yields the fuzzy sets 
Aj. The projection must satisfy the following relation: 
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where Aj(xjk) is the degree of membership of the kth sample of the input variable xj 
to the fuzzy set and Aj and Bi(yk) are the degree of membership of the kth sample to 
the cluster Bi. Expression (24) gives the following fuzzy rule: 
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Note that in order to avoid generating two or more fuzzy rule for each input 
variable, it is necessary to assume that the fuzzy clusters cannot be convex. After 
generating the fuzzy set A, the fuzzy sets Aj are approximated by trapezoidal-type 
set. Hence, the consequent part of the rule generated from equation (24) is 
changed by consequents in the typical Takagi-Sugeno form: 
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The unknown parameters  are identified by using the traditional least square 
approach.  

i
jc

 
The original Takagi-Sugeno approach has a number of drawbacks. It performs the 
clustering process using only the information from the output space, thus ignoring 
the input space. Furthermore, non-convex clusters in the input space must be split 
into two or more sets. Some of these limitations were overcome by other authors 
such as Briseño and Cipriano (1996). 
 
3.2.7 Bayesian Air Quality Models 
 
Bayesian models, also known as Directed Acyclic Graphs (DAGs), are of 
increasing interest to the scientific community since they provide a natural tool 
for dealing with uncertainty and complexity (Jordan, 1999). They are essentially 
graphical models obtained as a combination of graph theory and probability 
theory. Bayesian models have been considered, in particular, in the machine 
learning and statistics communities. More recently, they have been applied to 
modelling dynamic systems because they can encode the time variable (Dynamic 
Bayesian Networks, DBNs). A very simple DAG is represented in Figure 2.

 
It 

consists of two nodes labelled as X and Y respectively, which represent two 
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random variables. The arrows from X to Y can be informally interpreted as 
indicating that X causes Y. This model can be represented as: 
 

)|()()|()(),( YXPYPXYPXPYXP ⋅=⋅=   (27) 
 
where P(X,Y) represents the joint probability, P(X) and P(Y) are a priori 
probabilities, and P(Y|X), P(X|Y) are conditional probabilities. If we consider Y as 
the observed variable and X as the hidden variable, one goal of the model could 
be to infer X given Y (i.e., to invert the causal arrow).  
 

 
 

Figure 2. A very simple DAG. 
 
This ability is referred to as inference. In order to make inferences, it is necessary 
to estimate the model parameters (learning) that can be represented as a 
conditional probability table (CPT). There are two main kinds of inference: exact 
and approximate. Exact inference, in the sense of having a closed form solution, 
is only possible in a very limited set of cases, most notably when all hidden nodes 
are discrete or when all nodes (hidden and observed) have linear Gaussian 
distributions. One of the most relevant exact inference algorithms for DAG 
models is the “chain-rule” decomposition that is illustrated by the following 
expression: 
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This algorithm essentially pushes sums inside products to marginalize the 
irrelevant hidden nodes efficiently; this is the so-called variable elimination 
algorithm (Pearl, 2000). The result of the computation is a single marginal P (Xi | 
Xj). However, even in cases where exact inference is possible, it might not be 
computationally feasible; the cost of inference depends on the width of the 
inference tree. In this case, or when a closed form does not exist for the inference, 
one can use approximate inference. Several algorithms for approximate inference 
have been proposed, including the Expectation Maximization (EM) algorithm. 
The reader is referred to the recent book by Neapolitan (2004) for deeper insight 
into learning Bayesian Networks. 
 
An example of Dynamic Bayesian Network is shown in Figure 3. This network 
was considered by Nunnari and Cannavò (2004) to model SO2 daily mean time 
series at Melilli (Siracusa, Italy).  
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Figure 3. Example of Dynamic Bayesian Network. The meaning of the 
variables at the nodes is as follows: (T) air temperature, (P) atmospheric 
pressure, (SR) Solar Radiation, (WD) wind direction, (R) level of rain, 
(SO2) sulphur dioxide. The symbol _0 or _1 close to the variable indicates 
that it is evaluated at time t (the day of prediction) or at time t-1 (the day 
before). 

 
In this figure, the output node is SO2(t) (represented as SO2_0 in Figure 3), which 
allows us to compute the probability that the output belongs to one of the four 
classes defined for this variable. Hence, the model output is represented by the 
most probable class. Software packages such as Matlab® or Netica® can be used 
to learn the CPT for each node in the DAG.  
 
 
4 Building a Model for Air Quality Forecast 
 
Since statistical models for air quality forecast are based on extracting semi-
empirical relationships from pollution time series, they are strictly dependent on 
the point where information is recorded. Furthermore, they depend on several 
factors such as the type of pollutant (e.g., primary or secondary pollutant), the 
type of target (e.g., prediction of the daily mean values, daily maximum value, or 
hourly mean values), the horizon of the forecast (e.g., 1 day, 12 hours, etc.), the 
type of area (e.g., urban, suburban, rural, industrial) and so on. We assume that 
the designer has already chosen these elements and is aware about the current 
normative about the limit values for the considered pollutant. An example of 
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normative is the EC–Council directive 1999/30/EC of 22 April 1999 that provides 
the limit values for sulphur dioxide, nitrogen dioxide, oxide of nitrogen, 
particulate matter, and lead in ambient air. 
 
Furthermore, we assume that an adequate set of data is available in order to build 
and test the model under development. It is not easy to give rules for judging if a 
given available data set is adequate or not, since this depends on numerous factors 
enumerated above. Roughly speaking, we assume that a data set spanning over at 
least two years is available. The data set should concern both pollution and 
meteorological data. Emission data are in general unavailable, but in some cases 
one can try to use information related with emissions. As an example, in an urban 
area one can assume, as a surrogate of emissions data, the information from traffic 
flow data (if available). 
 
4.1 Structure of Prediction Models 
 
When building a short-term air quality forecast model, a crucial step is finding the 
most appropriate set of arguments of the unknown function in expression (7). In 
other terms, we have to establish the exogenous inputs (sometimes referred to as 
the “explanatory variables”) and the number of regressions for each considered 
variable. It is necessary to stress here that the solution of this problem is perhaps 
one of the major problems for the modelers. First, all the candidate variables are 
often numerous and not necessarily known a priori. Moreover, the link between 
the pollutant concentration and the exogenous inputs is nonlinear and depends on 
the investigated geographical area. In addition, the selected variables depend on 
the particular target (daily maximum, daily mean, hourly mean, etc.). Finally, we 
must stress that the observed data are affected by various kinds of noises. 
Although several authors have addressed the problem of input variable selection, 
it is still resolved in an unsatisfactory way. This problem has been studied by 
Zickus et al. (2001) who evaluated which of 20 input variables are relevant for 
predicting exceedances of the European PM10 daily average limit value in the 
Helsinki Metropolitan Area. These authors showed good agreement with some 
selected predictors, but also variability among different methods. Aware of the 
high level of complexity in the variable selection problem, the designer can try to 
have some rough indication about candidate exogenous variables by using 
correlation analysis and calculation of typical days. Correlation and typical days 
can be computed as explained below.  
 
4.1.1 Correlation Analysis 
 
The internal correlation ρ(τ) of the observation in a time series y(t) is expressed as 
a function of the time lag τ between observations and is defined mathematically 
as: 
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where yt, t = 0, ±1, ±2, … represent the values of the series y(t) and µy is the mean 
of the series. The symbol E denotes the expected value. Expression (29) can be 
calculated as: 
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where µyc is the mean of the observed values y1, y2, ….,yn. A plot of the values of 
the autocorrelation against the lag is known as the autocorrelation function. 
Similarly, the correlation between two time series y(t) and u(t) is defined as: 
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and can be computed as: 
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A serious limitation using correlation analysis is that with this technique, it is 
possible to identify only linear associations between the considered pollutant and 
other explanatory variables (e.g., meteorological variables) when we expect that 
the associations are non-linear. 
 
4.1.2 Typical Day Analysis 
 
A typical day is calculated using series of average hourly values as follows: 24 
averages are calculated, one for each hour of the day being considered, for each 
day of the year. Each average is therefore calculated on 365 values (366 in a leap 
year) recorded at the same time of the day; this is expressed in a formula as: 
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As an example of a typical day, SO2 concentrations recorded at the station 
referred to as Melilli in the industrial area of Siracusa (Italy) from 1995 to 1999, 
are shown in Figure 4a. Typical days of SO2 plotted with typical days of wind 
direction (WD) are shown in Figure 4b. 
 

 
Figure 4. Example of typical day a) SO2 b) SO2 and wind direction. 

 
The typical day SO2 concentration at Melilli (Figure 4a) shows peaks between 10 
a.m. and 12 p.m. local time that are somewhat surprising. In fact, pollution in this 
area is mainly due to oil refinery industries that are characterized by almost 
constant emission rates during 24 h. Hence, it seems reasonable to attribute the 
peaks to local atmospheric condition and, in particular, to the wind regime as 
suggested by Figure 4b. From Figure 4b, one can easily conclude that wind 
direction could be a candidate to explain the behaviour of SO2 in this area. A 
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possible explanation of what has been observed was studied by Nunnari et al. 
(2004). 
 
4.2 An Iterative Procedure for Building Models 
 
Let us assume that, depending on the considered pollutant and target, a set of 
candidate explaining variables has been obtained by using correlation analysis 
and/or day type analysis, or any other a priori knowledge. Furthermore, let us 
suppose that a representative data set is available. 
 
Independently of the modelling technique considered, the identification of a 
model for short term forecast of air quality involves an iterative process 
consisting of the following steps: 

1. Divide the data set into (at least) two subsets: 1) a calibration data set 
which will be used to identify the model parameters; and 2) a testing data 
set that will be used to test the model performance (i.e., test its 
generalization capabilities). If possible, depending on the extension of the 
data set available, it is more suitable dividing that data set into three 
subsets. The first will be referred to as the calibration (or the learning) 
data set, the second as the validation set and the third as the test set that 
will be used to finally evaluate the model performance. The presence of 
the third data set is justified by the fact that in an iterative process, the 
second data set (i.e., the test) is in some sense still used to find an optimal 
set of model parameters, as it will be clear after reading the following 
steps.  

2. Identify the model parameters by using one of the available methods (e.g., 
those enumerated in Section 3). 

3. Validate the model against the validation data set. 
4. Modify the model structure when it does not perform satisfactorily. In this 

case, go back to step 2 and repeat the whole process. 
 
4.3 Evaluating the Model Performances 
 
From the procedure outlined in the previous section, it is evident that the problem 
of evaluating the model performance plays a crucial role in the success of the 
model. It is important to consider indices that are able to evaluate performances in 
an objective manner. Indices usually considered for evaluating statistical air 
quality models can be grouped into two separate sets: 1) global fit indices, for 
example, those indices that give measures of the fit of the overall time series (i.e., 
RMSE error); and 2) those that give a measure of the capability of a given model 
to predict critical episodes, referred to as exceedance indices. A list of the 
considered performance indices is reported below. Interested readers can find 
detailed information about performance indices in Willmott (1982) and Willmott 
et al. (1985). Further insights can be found in Van Aalst and De Leeuw (1997).  
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4.3.1 Global Fit Indices 
 
Let us indicate µo and µp as the mean of the observed time series (O) and 
predicted time series (P), and σo and σp as the corresponding standard deviations. 
The most widely considered global fit indices are the following: 
 
Bias 
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)(1     (34) 

 
The mean bias error is the degree of correspondence between the mean forecast 
and the mean observation. Lower numbers are best. Values < 0 indicate under-
forecasting. 
 
MAE 
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The Mean Absolute Error is the mean of the absolute value of the residuals from a 
fitted statistical model. Lower numbers are best. 
 
RMSE (the Root Mean Square Error)  
 

∑
=

−
N

i
ii OP

N 1

2)(1     (36) 

 
σe

2 (the variance of the error) 
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σ2

un (the unexplained variance in percent) 
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where σO

2 represents the variance of the observed time series.  
 
 
 
d (the index of agreement)  
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It gives the measure of the degree of which predictions are error-free. With 
respect to a good model, the index of agreement should approach one. 
 
ρ (the correlation coefficient observed-predicted) 
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4.3.2 Exceedance Indices 
 
This kind of performance indices were adopted by the European Environment 
Agency (Van Aalst and de Leeuw, 1997) to test the capabilities of a short term 
forecast model to predict exceedances of photochemical smog episodes, with 
particular attention to tropospheric ozone concentrations. These indices are 
defined according to the following standard contingency table (Table 1):  
 

Table 1. The EEA contingency table. 
 

Alarms Observed  

Forecasted Yes No Total 

Yes A f-a f 

No m-a N+a-m-f N-f 

Total M N-m N 
 
where: 
 
N = total number of data points 
f      = total number of forecast exceedances 
m   = total number of observed exceedances 
a    = number of correctly forecast exceedances 
 
Using these definitions, the following indices can be defined: 
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SP (the probability of detection)  
 

100
m
aSP =      (41) 

 
SP is the fraction of correct forecast of critical events. Its values range from 0 to 
100 (100 being the best value).  
 
SR (the percentage of predicted exceedances actually occurred)  
 

100
f
aSR =      (42) 

 
SR is the fraction of realised forecast critical events (range from 0 to 100 with a 
best value of 100). 
 
FA (the false alarm rate)  
 

)100( SRFA −=     (43) 
 
FA is the percentage of instances when predicted exceedances do not occur. With 
respect to a good model, FA should approach zero. 
 
SI (the success index)  
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SI indicates how well the exceedances were predicted. N is the total samples in 
the time series. Since SI is not affected by a large number of correctly forecasted 
non-exceedances, it is useful for evaluating rare events. SI ranges from –100 to 
100 (100 being the best value). 
 
 
5 Identification of Statistical Air Quality Models  
 
In this Section we report some case studies concerning the application of 
statistical modelling techniques to different areas. Results refer to different time-
horizon (from hours to 1 day), targets (e.g., 1 hour average, 1 day average, 1 day 
maximum, etc.), and modelling techniques.  
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5.1 Ozone Grey-Box and MLP at Brescia and Catania (Italy) 
 
The application of grey-box and artificial neural networks models has been 
performed in two Italian urban areas: 1) Brescia in the Northern part of Italy and 
2) Catania in the Southern part (Finzi et al., 1998).  See Figure 5. 
 

 
 

Figure 5. Location of Brescia and Catania. 
 
For each city, the examined data records consist of 1 h average O3, CO, NO and 
NO2 concentrations measured by the urban air quality monitoring network. In 
particular, tropospheric ozone is a photochemical oxidant that may cause serious 
health problems to people and damage to materials and crops. The European 
Community directive 92/72/EEC, following the WHO guidelines, prescribes air 
quality standards for ozone in terms of threshold values for health protection, 
population information and warning (Sluyter and Van Zantvoort, 1996). The 
critical anthropogenic emissions (mainly traffic and combustion processes), the 
frequent stagnating meteorological conditions and the high solar radiation in 
Mediterranean regions cause ozone peaks, especially during the summer months. 
In order to take short-term abatement actions to prevent critical episodes, a proper 
real time concentration exceedances alarm system was set up for population 
information and warning; different forecast modelling methodologies have been 
used and compared.  
 
Due to the particular relevance of photochemical pollution during summer season, 
two time series of hourly data measured during June-August 1996 and 1997 
respectively have been taken into account for both cities. The first one has been 
used as the training set in identifying the model stage, while the validation of the 
predictors has been performed on the second one.  
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A pre-processing phase was required to remove the patterns containing 
incomplete data due to non-working or re-calibration of the measuring 
instruments.  
 
5.1.1 Grey-Box Model Identification 
 
Different classes of grey-box models have been considered and identified for O3 
concentration among stationary and cyclo-stationary autoregressive models 
having as inputs other chemical compounds taking part in the photochemical 
reactions. The most significant phenomenon in explaining O3 dynamics is the 24 
h period of solar radiation, which is directly connected to the photochemical 
atmosphere reactivity and indirectly to the regular variation of vehicular urban 
traffic emissions throughout the day.  
 
The particular grey box model examined is cyclo-stationary with period of 24 h 
and assigned ranges of internal stationarity of the parameters during sub-periods 
of the day (night, sunrise, morning, afternoon, sunset). Model performances were 
evaluated in terms of Bias, σe, σ2

un, and ρ. The results obtained are reported in 
Table 2 and 3 for Brescia and Catania respectively. 
 

Table 2. Performance indexes for grey-box predictors at Brescia. 
 

Performance 
Indexes 

Identification 
(1996) Test (1997) 

   1 hour 3 hours 6 hours 
Bias 0 0.32 0.79 1.68 
σe 7.25 8.78 11.53 12.56 

σun
2 0.13 0.32 0.54 0.63 

ρ 0.93 0.83 0.69 0.62 
 

Table 3. Performance indexes for grey-box predictors at Catania. 
 

Performance 
Indexes 

Identification 
(1996) Test (1997) 

   1 hour 3 hours 6 hours 
Bias 0 0.65 0.25 3.61 
σe 4.57 5.64 9.73 11.31 

σun
2 0.06 0.08 0.23 0.31 

ρ 0.97 0.96 0.86 0.83 
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5.1.2 MLP Neural Network Model Identification 
 
It is well known that there are no practical criteria for the definition of the 
topology of the MLP solving a given problem. Hence, the best network topology 
has been searched by a trial and error procedure. As a first attempt, the input 
pattern has been defined as: 
 

)(,),1(),(,),(,),1(),(,,)1(),( 1111 pppp ntututuntutututyty −−−−− …………  
 
where y(t) is the ozone concentration recorded at time t and u1(t), ...,up(t) are 
exogenous inputs representing other pollutants of the nitrogen cycle recorded with 
the ozone (e.g., NO, NO2, NMHC). The structure of the output pattern has been 
defined as [y(t+ka)], ka being the number of steps ahead of the prediction model. 
Several attempts have been performed varying the parameters p, n1, ..., np, and the 
number of units in the hidden layer nh . The parameter ka has been set to 1, 3 and 
6. For each attempt, the back-propagation algorithm has been used to train the 
network. At the end of the trial-and-error procedure, the network topology has 
been obtained as the one giving the best set of performance indexes. In this 
application, Auto Regressive non-linear models have been investigated. The best 
network topology for the considered problem was a MLP of the type 3-12-1 (i.e., 
3 neurons in the input layer, 12 neurons in the hidden layer and 1 neuron in the 
output layer). This result is reliable, independently from the value of ka. In Table 
4 and 5, the performance indexes are reported. 
 

Table 4. MLP neural network predictors at Brescia. 
 

Test (1997) Performance 
Indexes 

Learn  
(1996) 

1 hour 3 hours 6 hours 
Bias -0.49 -0.53 -0.18 2.86 
σe 4.84 5.92 6.71 8.50 

σun
2  0.15 0.06 0.30 

ρ  0.92 0.97 0.90 
 

Table 5. MLP neural network predictors at Catania. 
 

Test (1997) Performance 
Indexes 

Learn  
(1996) 

1 hour 3 hours 6 hours 
Bias 0.01 -0.45 -1.19 -3.68 
σe 4.68 5.55 9.06 11.73 

σun
2 0.07 0.08 0.21 0.34 

ρ 0.97 0.96 0.89 0.86 
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5.1.3 Discussion of Results 
 
The performance indexes reported in Tables 2 to 5 show that the mean square 
error, the ratio of the unexplained variance and the correlation coefficient in the 
considered case are generally more satisfying for the neural model. This is 
evident from the validation concerning the Brescia data set. In particular, the last 
index reveals a greater efficiency of neural models to capture the deterministic 
and persistent part of the historical time series. 
 
In order to test the capabilities of the predictors to predict episodes of poor air 
quality threshold, the SP and FA indices were computed for different time horizon 
and thresholds. The results are shown in Table 6 and 7 for Brescia and Catania 
respectively.  
 

Table 6. Performance indexes corresponding to different O3 concentration 
threshold value at Brescia. 

 

Grey box Neural 
network Forecast 

Step 
Threshold

value Outl. N.
SP FA SP FA 

3 hours  77.9 27.2 74.7 12.7 
6 hours 

50 ppb 
 

443 
 75.4 30.4 81.0 34.1 

3 hours 55.9 7.0 52.9 2.3 
6 hours 

70 ppb 
 

34 
 64.7 9.0 38.2 1.8 

 
Table 7. Performance indexes corresponding to different O3 concentration 
threshold value at Catania. 

 

Grey box Neural 
network Forecast 

Step 
Threshold

value Outl. N.
SP FA SP FA 

3 hours  88.7 12.9 88.7 11.1 
6 hours 

50 ppb 
 

240 
 86.2 13.2 80.4 9.1 

3 hours 23.3 1.6 6.7 0.0 
6 hours 

70 ppb 
 

30 
 0.0 0.0 0.0 0.0 

 
For the cleverness of the two classes of models in foreseeing the O3 peaks 
correctly, the results show that the grey-box models tend to have a higher 
performance in forecasting critical episodes, although they give a larger number 
of false alarms. This fact can be related to the different features of the two model 
classes; in particular, the considered grey-box models are time-variant while the 
identified neural models have a stationary structure. So it seems that neural 
models give more conservative predictions than grey-box models. The 
comparison between temporal O3 patterns (measured and forecast values), 
reported in Figures 6 and 7 for Brescia and Catania respectively, looks quite 
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satisfying. The two periods (10-15 August 1997 for Brescia and 3-7 July for 
Catania) have been chosen as significant both for their criticality with respect to 
ozone pollution over Europe and for their typical photochemical feature. 
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Figure 6. Brescia O3 patterns: measured concentrations (__), 3 hours ahead 
forecast by means of grey-box model (. .) and neural network (- -). 
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Figure 7. Catania O3 patterns: measured concentrations (__), 3 hours 
ahead forecast by means of grey-box model (. .) and neural network (- -). 

 
5.2 Ozone Fuzzy and Neuro-Fuzzy Model at Brescia and Siracusa (Italy) 
 
In this Section, fuzzy and neuro-fuzzy models for ozone at Brescia and Siracusa 
(industrial area) are considered. The industrial area of Siracusa is located in the 
eastern cost of Sicily, about 50 Km south of Catania (Figure 5). In the post-WWII 
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period, one of the largest concentrations of petrochemical industries in Europe 
developed here and it is considered to be an area of high environmental risk.  
 
5.2.1 Brescia Metropolitan Area 
 
The examined data records consist of O3, CO, NO and NO2 hourly concentrations 
measured by the urban air quality monitoring station in the city of Brescia. Local 
temperature monitored and forecast data were available from the meteorological 
office. The models were identified on 1994-1998 and validated on 1999 summer 
season data (May to September). 
 
The neuro-fuzzy network forecast is performed on the maximum expected hourly 
concentration value during the afternoon. The model has been identified assuming 
triangular membership functions and sum-prod inference mechanism. The crisp 
model inputs are O3 concentrations and the most relevant meteorological 
parameter (temperature) taking part in the photochemical reactions during the day 
(Finzi and Volta, 2000).  
 
Table 8 shows the inputs and their respective fuzzy set number for the best model 
as a trade-off between a satisfying forecast performance and a possible operational 
implementation. 
 

Table 8. The neuro-fuzzy model inputs. 
 

Inputs Value Fuzzy sets 
O3 conc. 10 a.m.-12a.m. average 3 

O3 gradient 12 a.m.-6 a.m. difference 4 
Temperature 10 a.m.-12a.m. average 3 
Temperature 12am- 6a.m. difference 2 

 
The rule base came out to be a set of 30 rules. The persistent model skill 
parameters have been also computed as lower bound performance indexes. The 
forecast evaluation has been related to an O3 threshold value of 140 µg/m3. Figure 
8 compares the European skill parameters computed for the persistent and the 
neuro-fuzzy predictor. The neuro-fuzzy model seems worthy to be used mainly for 
its cleverness in avoiding false alarms, while the SP index claims for a forecast 
improvement in enhancing some episodes. 
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Figure 8. Performance indexes referred to the persistent model. 
 
5.2.2 Siracusa Industrial Area 
 
Fuzzy models have been obtained by using the approach described in Section 
3.2.1.2. Data for model identification were recorded during 1995-1998, while the 
test was done using data recorded in 1999. The fuzzy model forecasts are 
performed at 8 p.m., giving the maximum expected hourly concentration value 
during the day after. The inputs of the fuzzy prediction model studied for the 
Siracusa industrial area are shown in Table 9. 
 

Table 9. The fuzzy model inputs. 
 

Inputs Value Fuzzy sets 
O3 conc. 1 a.m. – 8 p.m. average 3 

NO2 1 a.m. – 8 p.m. average 3 
NOX 1 a.m. – 8 p.m. average 3 

Temperature 10 a.m. – 6 p.m. average 3 
Solar Radiation 10 a.m. – 6 p.m. average 3 

Pressure 10 a.m. – 6 p.m. average 3 
Wind Direction 10 a.m. – 6 p.m. average 3 

 
The proposed model was compared with a persistent model. The fuzzy model 
identified consist of 42 rules (3 fuzzy sets of trapezoidal type for each considered). 
The results of the comparison carried out with the persistent model for a threshold 
of 140 µg/m3 are reported in Figure 9. 
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Figure 9. Performance indices for the Fuzzy model compared with the 
persistent model for the Siracusa industrial area. 

 
5.2.3 Comments on Results 
 
The neuro-fuzzy model identified for the Brescia metropolitan area, which was 
designed specifically to predict critical episodes, shows a satisfying performance 
both in forecasting exceedances of the threshold level and in avoiding false 
alarms.  
 
The SP index obtained for the fuzzy model identified for the Siracusa industrial 
area is considerably better than the one exhibited by the persistent model. On the 
contrary, the fuzzy model shows worse performances in terms of SR, which results 
in a larger number of false alarms. This is due to the fact that the performances of 
the fuzzy model have been optimised with respect to the SP parameters.  
 
Finally, it must be observed that: 

• fuzzy and neuro-fuzzy predictors perform better than persistent model (i.e. 
linear ones) 

• fuzzy and neuro-fuzzy model complexity and flexibility allow the 
optimization of model performances, stressing the capability to forecast 
exceeding values or avoiding false alarms 

• neuro-fuzzy models, although they are non-linear, are more readable (due 
to the typical “if … then” form) than the MLP neural network models, and 
can suggest physical explanation of pollutant processes. 

 
5.3 Inter-Comparison Among ARCX, MLP, NFU and FU Forecast 

Models 
 
In the preceding Section 5.2 grey-box and neural networks predictors were 
compared to each other, while in Section 4.2 the pair of neuro-fuzzy and fuzzy 
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models were considered. In this Section, a wider inter-comparison exercise 
involving grey-box (ARCX), neural networks (NN), neuro-fuzzy (NFU) and 
fuzzy (FU) models will be reported. The selected areas are still Brescia and 
Siracusa, and the target is the forecast of ozone daily maximum concentration. 
For all the considered models, exogenous inputs were: 

− the average ozone concentration computed between 4 p.m. and 8 p.m. of 
the day before  

− the maximum temperature between 1 a.m. and 8 p.m. 
− the NO2 average concentration between 4 p.m. and 8 p.m. of the day 

before  
 
The data set for both areas was represented by meteo–chemical measures 
recorded in the years 1995 to 2001. Instead of splitting the data into two different 
sets (the so called learning set and validation set), as it is usual among the neural 
network practitioners, in order to take the generalisation capabilities of the 
prediction models into account, the data set was divided into three subsets: the 
learning set, the validation set and the testing set. It has been pointed out indeed 
(e.g., Sjoberg and Ljung, 1995) that the validation error rate, periodically 
computed during the learning phase, is not a good estimate of the generalisation 
error. One way to evaluate an unbiased estimate of this last error is to run the 
prediction model on a third set of data, the test set, not used at all before for the 
training process. In the inter-comparison exercise, the learning set, the validation 
set and the testing set were composed respectively by data recorded in 1995 to 
1998, 1999, 2000 and 2001. The results, referring to a threshold of 140 µg/m3 in 
terms of forecasting performances, are shown in Figures 10 and 11 for Brescia 
and Siracusa respectively.  
 

 
 

Figure 10. Performance indices for Brescia. 
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Figure 11. Performance indices for Siracusa. 
 
Based on the reported results, the following considerations can be made: 

• The forecasting performances are generally better for Siracusa than for 
Brescia. This means that the performance levels are point dependent no 
matter what modelling technique is considered. This fact can be easily 
explained by taking the different geographic meteo-climatic conditions of 
the two areas into account. Probably there were ozone accumulations in 
Siracusa that depend on a quite regular sea breeze regime. The 
concentration daily peaks can be predicted more easily with respect to 
Brescia. 

• ARCX, NF and NN predictors work better than the persistent model in 
terms of SP and SI indices.  

• While NN and NF usually perform slightly better than ARCX in terms of 
SP and SI, ARCX performs better in terms of FA in some cases. 

 
5.4 Conclusive Remarks 
 
At the end of this Section some further remarks are made referring to the results 
reported in the preceding Sections 5.1 to 5.3. The first consideration is that there is 
no single modelling approach exhibiting all the performance indices at the best 
level. The structure of a model, as well as its performance, is strictly dependent on 
the particular monitoring site. The forecast performance is usually higher if 
reliable meteorological information is provided as inputs. This means that, when 
information about pollutant emissions is not available, meteorological conditions 
play a key role in improving the reliability of predictions. The results reported 
show that not all observed critical episodes can be explained on the basis of 
historical concentration time series and meteo-climatic data measured at ground 
level. Neural based approaches, even the neuro-fuzzy version, seem more 
promising (though moderately) to critical events forecast.  
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6 An Operational Decision Support System 
 
As example of possible operational use of forecast models, a prototype of 
Decision Support System (DSS) for short-term emission reduction measures, is 
described in Figure 12 (Finzi, 2001). It implements two feedback loops, which 
may be based on different methodologies taken into consideration. Air quality 
status forecast, given by the daily model, is supplied to the Control Authority in 
order to support the decisions relevant to the emission abatement strategies 
(vehicle traffic reduction or restriction in different metropolitan areas, temporary 
adoption of closer industrial emission limits, health prevention policies, etc.). 
These measures can prevent smog episodes if they are planned ahead of time. It is 
also possible to inform the population by means of media, in order to limit the 
unhealthy exposures; in this way, the feedback can prevent and reduce both 
pollution and sanitary risks. 
 

 
Figure 12. A Decision Support System for Air Quality Alert. 

 
The designed system has a second internal feedback improving operational 
effectiveness in the short term (hours). The information, provided both by the 
hourly predictor model and the on-line meteo-chemical networks, allows the air 
quality managers to monitor the current pollutant evolution with a high 
confidence. 
 
Moreover, any exceedance of the threshold, if not correctly forecast a day in 
advance, can be quickly recognised in the morning by the alarm system in order 
to apply short-term pollution control measures (traffic information through road 
panels, mobilisation of the metropolitan police, traffic control by means of a 
computerised system of traffic lights, etc.). 
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The metropolitan areas of Brescia and Milan have been considered as case studies 
and the performance of the designed DSS in both cities is examined in the 
following paragraphs.  
 
6.1 Brescia Metropolitan Area Case Study 
 
The examined data records consist of O3, CO, NO and NO2 hourly concentrations 
measured by the urban air quality monitoring station in the centre of Brescia (see 
Figure 13). The city is located in the Po Valley in Northern Italy and is 
characterised by high industrial, urban, and traffic emissions, and continental 
climate. 
 

 
Figure 13. The Brescia area (in yellow). 

 
Local temperature monitored and forecast data are available from the 
meteorological office. Both classes of models were identified on the period 1994-
1998, and validated on 1999 summer season data (May to September). A pre-
processing phase was required to remove the patterns containing incomplete data 
due to non-working or re-calibration of the measurement instruments. 
Two alternative alarm DSS (see Figure 12) were set up: 

a) neuro-fuzzy network forecasts were performed on the maximum expected 
hourly concentration value one day in advance, while grey-box predictors 
provided 4 hour ahead forecast of O3 concentrations from sunrise to noon 
during the same day 

b) grey-box forecast was performed on the maximum expected hourly 
concentration value one day in advance, while neuro-fuzzy network 
predictor provided the maximum expected hourly concentration value at 
noon for the afternoon during the same day. 
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Case a) 
 
The neuro-fuzzy model has been identified for O3 maximum daily concentration, 
assuming Gaussian membership functions and max-min inference mechanism. 
The crisp model inputs were the chemical compounds (O3 and NO2 
concentrations) and the most relevant meteorological parameter (temperature) 
taking part in the photochemical reactions during the day. Table 10 shows the 
inputs and their respective fuzzy set number for the best model as a trade-off 
between a satisfying forecast performance and a possible operational 
implementation. The rule base came out to be composed by 135 rules.  
 

Table 10. The neuro-fuzzy model inputs. 
 

Inputs Value Fuzzy 
sets 

O3 conc. Max concentration 6 

O3 conc. 4p.m. - 8p.m. average 4 

NO2 conc. 4p.m. - 8p.m. average 4 

Temperature Max forecast for the 
following day 3 

Temperature Max 5 

 
Different grey-box models have been considered and identified for O3 hourly 
concentration in the classes of stationary and cyclo-stationary autoregressive 
models (Finzi and Volta, 2000).  
 
The most significant phenomenon in explaining O3 hourly value dynamics 
appears to be the 24 h period of solar radiation, which is directly connected to the 
photochemical atmosphere reactivity and indirectly to the regular variation of 
vehicular urban traffic emissions throughout the day. So, the particular grey-box 
model considered is a cyclo-stationary one of 24 h period, with assigned sub-
period internal stationarity ranges for the parameters (night, sunrise, morning, 
afternoon, and sunset). 
 
The persistent model (tomorrow equals today) skill parameters have also been 
computed as lower bound performance indices. The indices, related to an O3 

threshold value of 140 µg/m3, have been estimated for both daily neuro-fuzzy and 
hourly grey-box models. On the basis of the skill parameters computed for the 
persistent, the neuro-fuzzy and grey-box predictor, the second model seems 
worthy to be used mainly for its cleverness in avoiding false alarms, while SP 
index claims for a forecast improvement in enhancing some episodes. The hourly 
grey-box model provides a second internal system feedback, improving 
operational effectiveness in the short term (hours). The results (Figure 14) 
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underline the improvement mainly in forecasting ozone threshold exceedances 
(SP) and in performing success index (SI).  
 
The comparison among temporal O3 patterns (measured and forecast values), 
reported in Figure 15, points out the improvement provided in detecting alarms by 
the hourly model during a particular critical episode between 28 June and 7 July 
1999. 
 

0
10
20
30
40
50
60
70
80

SP SR SI

persistent model  daily predictor  double loop predictor
 

 
Figure 14. The estimated forecast skill parameters. 
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Figure 15. Ozone patterns: measured concentrations, daily forecast by 
means of single loop neuro-fuzzy model and double loop 4 hour ahead grey-
box predictor. 
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Case b) 
 
Different grey box models have been considered and identified for O3 maximum 
daily concentration forecast. The most significant phenomena in explaining O3 
maximum value dynamics appear to be the solar radiation and temperature, 
directly connected to the photochemical atmosphere reactivity, and the regular 
variation of vehicular urban traffic emissions during the day. So, the particular 
grey box model considered is a non-linear ARX(1), with assigned temperature 
categories (Table 11). 
 

Table 11. The grey-box model inputs. 
 

Inputs Value 
O3 concentration 4 p.m. to 8 p.m. average 

NO2 concentration 4 p.m. to 8 p.m. average 
Temperature Daily maximum value squared 

 
The neuro-fuzzy approach has been used to forecast the maximum expected 
hourly concentration value during the afternoon. The model has been identified 
assuming triangular membership functions and sum-prod inference mechanism. 
The crisp model inputs were O3 concentrations and the most relevant 
meteorological parameter (temperature) taking part in the photochemical 
reactions during the day. 
 
Table 12 shows the inputs and their respective fuzzy set number for the best 
model as a trade-off between a satisfying forecast performance and a possible 
operational implementation. In this case, the rule base came out to be composed 
by 30 rules.  
 

Table 12. The neuro-fuzzy model inputs. 
 

Inputs Value Fuzzy 
sets 

O3 conc. 10 a.m. to noon average 3 

O3 conc. 8 a.m. to noon gradient 4 

Temperature 10 a.m. to noon average 3 

Temperature 6 a.m. to noon gradient 2 

 
The performance indices, related to the O3 threshold value of 140 µg/m3, have 
been estimated for both neuro-fuzzy and grey-box models. The persistent model 
(tomorrow equals today) skill parameters have also been computed as lower 
bound performance indices.  
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Figure 16 compares the skill parameters computed for the four models: the daily 
(grey-box) and hourly (neuro-fuzzy) predictors, their combination in the air 
quality system and the persistent model. The first two predictors have good 
performance in avoiding false alarms, while the SP index for daily model 
provides a forecast improvement in enhancing some episodes. The neuro-fuzzy 
predictor matches the persistent model in correctly forecasting smog events.  
 
The air quality system of Figure 12, implementing the second internal feedback, 
improves operational effectiveness in the short term (hours), taking into account 
all recent available meteo-chemical measurements. The results underline the 
system synergy, mainly in forecasting ozone threshold exceedances (SP) and in 
global performance (SI). 
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Figure 16. The estimated forecast skill parameters. 
 
6.2 Milan Metropolitan Area Case Study 
 
The examined data records consist of photochemical pollutants hourly 
concentrations measured by the urban air quality monitoring network in Milan 
during 1994-1999. Local and synoptic meteorological data are also available from 
the meteorological office. The assessment of the results, in terms of forecast 
performance indices and statistical indicators, according to European 
Environment Agency guidelines, is presented in the following. 
 

 
 

Figure 17. The Milan metropolitan area (in yellow). 
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The Milan metropolitan area, the city and its suburbs (see Figure 17), is a very 
industrialised and populated region in the Po Valley. The data records examined 
in this study consist of O3, CO, NO and NO2 hourly concentrations measured by 
three urban and suburban air quality monitoring stations (Parco Lambro, Via 
Juvara, Piazza Zavattari). Local temperature monitored and forecast data are 
available from the meteorological office. The models have been identified during 
the period 1994-1998 and validated during 1998-1999. A pre-processing phase 
was required to remove the patterns containing incomplete data due to non-
working or re-calibration of the measuring instruments. 
 
Different predictors have been considered and identified for O3 and NO2 
maximum daily concentrations in the classes of stationary and cyclo-stationary 
auto-regressive models (Finzi, 2001).  
 
The most significant phenomenon in explaining O3 hourly value dynamics 
appears to be the 24 h period of solar radiation, which is directly connected to the 
photochemical atmosphere reactivity and indirectly connected to the regular 
variation of vehicular urban traffic emissions along the day. So, the particular 
grey box model considered is an auto-regressive model with exogenous inputs and 
categories. The inputs are O3 average concentrations measured from 4 p.m. to 8 
p.m. and the maximum temperature recorded during the day. The categories are 
defined for the future trend of the maximum temperature. The model has been 
identified for use in the summer seasons. 
 
The model, referring to the maximum NO2, is similar to the preceding one. The 
particular grey box model considered is an auto-regressive model with exogenous 
inputs and categories; the inputs are NO2 average concentrations measured mostly 
in the morning (from 7 a.m. to 2 p.m.) and the maximum temperature recorded 
during the day. The categories are built for the future trend of the maximum 
temperature. The model has been identified for use in the winter seasons. 
 
The persistent model (tomorrow equals today) skill parameters have been also 
computed as lower bound performance indices. The assessment of the results is 
presented in the following Figures 18 (a, b, c, d), both in terms of statistical 
indicators and real-forecast series comparison examples. All the indices have 
been computed with reference to a O3 threshold value of 150 µg/m3 and to a NO2 
threshold value of 135 µg/m3. As it can be seen, grey-box models, although 
structurally simple, give more reliable alarm forecasts with respect to persistent 
models for all the examined pollutant measurement locations. 
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Figure 18a. Forecast System Validation Juvara station. NO2 skill 
parameters (winter 1998). 
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Figure 18b. Zavattari station. NO2 skill parameters (winter 1998). 
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Figure 18c. P. Lambro station. O3 skill parameters (summer 1999). 
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Figure 18d. P. Lambro station. O3 real and forecast. Time series along the 
validation season (summer 1999). 

 
 
7 Conclusions 
 
Statistical modelling approaches have been the object of a growing interest 
among researchers involved in air quality modelling. This is proved by the large 
amount of studies published in literature, partially outlined in the first part of this 
chapter. This is also a consequence of the gradually increasing number of 
pollution data available from the monitoring networks. In addition, unlike 
deterministic models requiring a lot of input information (in most cases not 
available from monitoring networks in real time), statistical approaches represent 
a straightforward way to fit available pollution and meteorological time series.  
 
As shown in the preceding paragraphs, the statistical models’ performance in real 
cases is strictly point dependent and may require some time and trials to be 
properly tuned. However, a statistical approach provides an excellent and easy 
way to capture the global dynamics involved with the complex phenomena of air 
pollution, overcoming the drawbacks of using deterministic models when 
predictors have to work in real time (hours, few days).  
 
Also, statistical models are good ways to approach the problem of pollution peaks 
prediction. The results show that the number of critical episodes correctly forecast 
ranges from 60% to 90%, depending on the particular target, area and statistical 
modelling technique considered, while the rate of false alarms ranges from 30% 
to 50%. This apparently large number of false alarms can be ascribed to the lack 
of emission data in real time and correctly reflect the fact that not all critical 
episodes can be interpreted using the ground-recorded meteo-chemical 
information. However, a false alarm rate around 40% appears to be acceptable if 
the total number of critical episodes along the year is limited. Moreover, there is a 
reasonable evidence that these results can be further improved taking into 
account, when available, vertical profiles of significant meteorological variables 
(e.g., wind, temperature, etc.). The analysis carried out also highlights the role of 
meteorological forecasts as inputs to reliable predictors of pollutant critical 
episodes.  
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In the last section, the implementation of statistical models in decision support 
systems (DSS) is suggested as one of the actual possible use in real time. The two 
case studies reported show how the contribution of peculiar statistical approaches 
may be integrated in a feedback loop system, increasing the operational 
effectiveness of the DSS as a whole.  
 
Finally, it must be observed that all the examined models perform better globally 
than the persistent model, as indicated by the skill score indices computed as 
lower bound performance thresholds. 
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Appendix 
 

A Survey of Software Packages for Developing Forecast Models 
 
In this appendix, we give some information concerning the software packages for 
building forecasting models by using the techniques described in Section 3. 
 
ARX, ARIMA, and ARMAX models can be identified and simulated by using the 
Matlab® developed by Ljung (1991).  
 
Cyclo-stationary or grey-box ARMAX models can easily be implemented by 
using the Matlab® programming features. However, a specific tool for cyclo-
stationary models, referred to as Winast, was developed by the book of Finzi et 
al. (2001) and it is in the CD as part of the referenced book. 
 
MLP neural networks devoted to implement NARX model for air quality 
forecast can be applied using the general purpose Matlab® Neural Network 
Toolbox, which gives the user the possibility of using the high level graphical and 
training features. However, a large number of other tools are available through the 
Internet such as JANN (a Java Artificial Neural Network) developed at the 
University of Catania in the framework of the APPETISE project (IST - 99-
11746). This tool is available for interactive use at the following URL: 
http://www.dees.unict.it/users/gnunnari/appetise/jann/index.html. 
 
Fuzzy and Neuro-Fuzzy models can be implemented by using the Matlab® Fuzzy 
Toolbox 
 
Wavelet based models can be implemented by using the Matlab® Wavelet 
Toolbox. A specific tool has been coded as a Matlab script by G. Nunnari.  
 
Generalised Additive Models (GAM) and Local Prediction in Phase Space (LPH) 
models can be implemented by using a tool called TISEAN, which is free and 
available at the following URL: www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/index.html. 
 
Such software tool allows the analysis of time series with methods based on the 
theory of nonlinear deterministic dynamical systems, or chaos theory. The 
software has grown, with contributions from various groups, during the last few 
years and was put into distributable form for  
http://www.mpipks-dresden.mpg.de/~tisean98, held in Dresden, 11-21 Feb 1998. 
Some of the routines built around the programs are given in the book by Kantz 
and Schreiber (1997). 
 
Kalman Filtering models can be implemented by using Mathematica®: 
http://www.wolfram.com/products/mathematica/index.html. 
 

http://www.dees.unict.it/users/gnunnari/appetise/jann/index.html
http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2.1/index.html
http://www.mpipks-dresden.mpg.de/~tisean98
http://www.wolfram.com/products/mathematica/index.html
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Cluster analysis and modelling can be performed with routines available in the 
Matlab® Fuzzy tool box, or by using one of the available statistical software 
packages such as Mathematica® http://www.wolfram.com/products/mathematica/index.html
or XLstat http://www.xlstat.com/. 
 
Bayesian Modelling can be performed by using a number of software tools such 
as the Bayes Net toolbox for Matlab® developed by K. Murphy (see the 
following URL: http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html or 
Netica http://www.norsys.com/), which is one of the world's most widely used 
Bayesian network development software.  
 

http://www.wolfram.com/products/mathematica/index.html
http://www.xlstat.com/
http://www.ai.mit.edu/~murphyk/Software/BNT/bnt.html
http://www.norsys.com/



