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An integrated assessment modelling system was applied to an urban area to assess the impacts of emission

abatement measures, for PM10 and NO2, on air quality and human health by means of a cost-benefit analysis.
The largest contribution for health benefits derives from the reduction in PM10 concentrations in the Grande Por-
to municipalities.
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When ambient air quality standards established in the EUDirective 2008/50/EC are exceeded,Member States are
obliged to develop and implement Air Quality Plans (AQP) to improve air quality and health. Notwithstanding
the achievements in emission reductions and air quality improvement, additional efforts need to be undertaken
to improve air quality in a sustainable way – i.e. through a cost-efficiency approach. This work was developed in
the scope of the recently concludedMAPLIA project “Moving from Air Pollution to Local Integrated Assessment”,
and focuses on the definition and assessment of emission abatement measures and their associated costs, air
quality and health impacts and benefits by means of air quality modelling tools, health impact functions and
cost-efficiency analysis. The MAPLIA system was applied to the Grande Porto urban area (Portugal), addressing
PM10 and NOx as the most important pollutants in the region. Four different measures to reduce PM10 and
NOx emissions were defined and characterized in terms of emissions and implementation costs, and combined
into 15 emission scenarios, simulated by the TAPM air quality modelling tool. Air pollutant concentration fields
were then used to estimate health benefits in terms of avoided costs (external costs), using dose-response health
impact functions. Results revealed that, among the 15 scenarios analysed, the scenario including all 4 measures
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lead to a total net benefit of 0.3 M €·y−1. The largest net benefit is obtained for the scenario considering the con-
version of 50% of openfire places into heat recoverywood stoves. Although the implementation costs of thismea-
sure are high, the benefits outweigh the costs. Research outcomes confirm that the MAPLIA system is useful for
policy decision support on air quality improvement strategies, and could be applied to other urban areas where
AQP need to be implemented and monitored.

© 2016 Published by Elsevier B.V.
1. Introduction

Nowadays, poor air quality is recognized as one of themost pressing
problems in urban areas with very harmful impacts on health and the
environment (EEA, 2015). Moreover, the World Health Organization
(WHO) has recently classified air pollution as carcinogenic to human
beings (WHO, 2013a). According to the latest report on air quality in Eu-
rope (EEA, 2015), air pollution implications are mainly due to high
levels of particulatematter (PM) and ozone (O3) in the atmosphere. An-
thropogenic emissions are identified as the greatest contributors to air
pollutant concentrations, but atmospheric phenomena occurring at dif-
ferent spatial scales also contribute to the increase in environmental
damages.

In order to reduce air pollution effects, particularly in cities where
the majority of the European population lives, it is important to define
effective plans for air quality improvement. For this purpose, Air Quality
Plans (AQP) establishing emission abatement measures, previously
known as Plans and Programmes, have to be designed and implement-
ed by the Member States (MS) of the European Union (EU) in accor-
dance to the Framework Directive 96/62/EC on ambient air quality
assessment and management, whenever in their zones and agglomera-
tions the pollutant concentrations in ambient air exceed the relevant air
quality limit values. In 2008, based on the Framework Directive and in
other previously existing legal documents, a new Air Quality Directive
(AQD) (Directive 2008/50/EC) was published, introducing new con-
cepts, and simplified and reorganized guidelines. The application of nu-
merical models is highlighted in this new Directive as a fundamental
tool to better assess and manage air quality, encouraging their use in
the preparation of AQP. These models must be used in combination
with monitoring in a range of applications, as observed values are cru-
cial for validation of these modelling approaches.

In most EuropeanMS themodelling tools used in AQP consider pro-
cesses directly influencing air quality, from the emission to dispersion
and deposition of air pollutants, but do not include, for example, expo-
sure or indicators related to health (Miranda et al., 2015). Together
with air quality assessment, quantifying the impact of air pollution on
the public's health is a critical component for the design and evaluation
of effective local and regional AQP (Costa et al., 2014), although not di-
rectly required by legislation. Indeed, several scientific findings show
that current levels of air pollutants observed in European cities are asso-
ciatedwith health risks, such as, cardiovascular diseases and lung cancer
(Brook et al., 2004; Loomis et al., 2013;WHO, 2013a). Health impact as-
sessments provide an objective estimate of the influence of mitigation
measures on air quality and population health. It uses available epide-
miological studies together with routine environmental and health
data to evaluate the potential effects of a policy, programme or project
on the health of a population, including how those effects are distribut-
ed across the population – thus helping decisionmakers to plan and im-
plement measures to protect public health more effectively. When
economic values are applied to these health endpoints, the monetary
costs and benefits of different options can also be compared directly
(O'Connell and Hurley, 2009).

The risk of developing a disease due to exposure to agents with dif-
ferent levels of intensity and duration can be assessed using a statistical
model and corresponding exposure-response functions (ERF) (Smith et
al., 1999). In the case of AQ, an ERF links the concentration of pollutants
to which a population is exposed with the number of health events oc-
curring in that population. They may be reported as a relative risk of a
certain health response for a given change in exposure or as a slope
from a linear regression model between the exposure and the risk of a
certain health response. It should be noted that health effects can
occur within a short period after exposure (short-term exposure)
resulting in acute effects, or as a cumulative exposure over a longer pe-
riod of time (long-term exposure) expressed as chronic effects. The ap-
propriate selection of adverse health outcomes and ERFs is a critical
step. The findings of epidemiological studies provide the scientific
basis for these decisions. Thus, the impact is determined by the relation
of two variables: exposure and effect. One ormore indicators are used to
express the change in population health status due to exposure to an air
pollutant (stressor); most health-based indicators are or derive from
mortality and morbidity endpoints.

Regarding the health impacts arising from air pollution, the follow-
ing aspects in epidemiological studies are considered: (i) involved pol-
lutants and their air concentration levels; (ii) health indicators
analysed in terms of morbidity and mortality; (iii) affected age groups;
and (iv) exposure time. These data are used to quantify the extent of
these impacts evaluated through ERF and health outcome frequencies
which, combinedwith the population exposure to air pollution changes
after the implementation of air quality improvement measures, pro-
vides the number of attributable cases/days per health indicator (Eq.
(1)) (EC, 2005).

ΔRi ¼ Iref � CRFi;p � ΔCp � pop ð1Þ

where:

ΔRi – Response as a function of the number of unfavourable implica-
tions (cases, days or episodes) over all health indicators (i=1,…, n)
avoided or not;
Iref – Baseline morbidity/mortality annual rate (%);
CRFi,p – Correlation coefficient between the pollutant p's concentra-
tion variation and the probability of experiencing or avoiding a spe-
cific health indicator i (%, i.e. Relative Risk RR associated to a
concentration change of 1 μg·m−3);
Δ;p – Change in the pollutant p's concentration (μg·m−3) after the
adoption of abatement measures (emission scenarios); and
pop – Population units per age group exposed to pollutant p.

ERF values are usually derived from epidemiological studies due to
absence of specific information on exposure-response relationships for
the target area/population under study. Therefore, it is recommend
selecting reference and up-to-date ERF preferably from an authoritative
and influential institute or organisation (INTARESE, 2007). Usually the
ERF used to calculate the response to pollutants exposure in Europe
are from well-known USA studies (e.g. Harvard Six Cities study). How-
ever European cohort studies have also shown results consistent with a
causal link between long-term air pollution exposure and mortality in
Europe (Gehring et al., 2006; Raaschou-Nielsen et al., 2013). WHO has
recently published a set of recommendations for ERF and cost-benefit
analysis of key pollutants in support of the European Union's air quality
policy revision (WHO, 2013b), where ERF and related background infor-
mation for severalmortality andmorbidity effects associatedwith short
and long-term exposure to particular air pollutants, such as particulate
matter (PM), ozone (O3) and nitrogen dioxide (NO2), are provided.

Health impacts need to be translated into monetary values (i.e. ex-
ternal costs), in order to be properly considered as economic costs.



Fig. 1.Methodological flowchart of theMAPLIA system (SNAP, Selected Nomenclature for
sources of Air Pollution, refers to the emission source categories considered).
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These external costs are generally divided into three broad categories:
direct costs (health care costs), indirect costs (productivity and produc-
tion losses) and intangible costs (pain and suffering). Direct and indirect
costs are estimated on the basis of market prices, while intangible costs
are based on non-market prices (Pervin et al., 2008).

Methodologies combining the effects of several emission abatement
measures on the air quality and potential impacts on human health, as
well as the economic evaluation associated to the implementation of
measures and resulting external costs, enable cost-benefit/efficiency
analyses of the control options (Amann et al., 2011) and are an added
value to the decision-making process. For this reason, in the recent
years, Integrated Assessment Methodologies (IAM) for air quality plan-
ning (encompassing health impact assessment) have already been for-
mulated and implemented at the continental and national scales (e.g.
Comes et al., 2010; Karvosenoja et al., 2010; Vedrenne et al., 2014). In
the scope of the FP7 APPRAISAL Project, an overall review has been per-
formed concerning IAM used in different MS to evaluate the impact of
local and regional air quality plans and their health implications
(APPRAISAL, 2013a). With few exceptions (e.g. Mediavilla-Sahagún
and ApSimon, 2006; Mensink et al., 2003; Vlachokostas et al., 2009;
Zachary et al., 2011; Carnevale et al., 2012), IAM on a regional and
local scale are scarce. This lack of local IAM arises from the difficulty to
fully characterize, with enough spatial detail, the “within country” var-
iability in emission patterns due to, for example, socio-economic char-
acteristics, geographical variations in urbanization, and particular
meteorological and chemical conditions. Integrated assessment in
terms of local air quality compliance must, therefore, be a bottom-up
approach that links decision making, air quality dynamics (often non-
linear), source identification and consequent health impacts in a
customised but consistent way to suit the capability and needs of each
regional/local situation (APPRAISAL, 2013b).

This work is focused on the definition of emission abatement mea-
sures and the assessment of their associated costs, air quality and health
impacts and benefits by means of air quality modelling tools and cost-
efficiency analysis and health impact functions, specifically developed
for urban areas in the scope of the recently concluded MAPLIA project
“Moving from Air Pollution to Local Integrated Assessment”.

2. The MAPLIA system

The MAPLIA system was designed to support the development of
AQP requiring the definition and testing of specific and local/regional
abatement measures. It is based on a scenario analysis, which starts
with the identification of control strategies/measures as a result of air
quality exceedances. These measures have to be translated into emis-
sion reductions and their impacts on air quality quantified usingmodel-
ling tools. Policy implications, technical feasibility, resulting costs and
health impacts are evaluated, but not in a fully integrated perspective.

TheMAPLIA system allows, therefore, evaluating the effects of previ-
ously selected measures in terms of costs, emissions, air quality, health
impacts, and associatedmonetary benefits (also called avoided external
costs). For this purpose, scenarios including different emission abate-
mentmeasures are defined and their implementation costs are estimat-
ed. A reference scenario reflecting the emissions of a base year, for
which only the influence of imposed/implemented measures in accor-
dance with the legal framework is evaluated (CLE – Current Legislation
Emissions), is the basis for the assessment. Reduction scenarios are
established to cover non-compliance situations to the air quality limit
values defined in the air quality Directive (2008/50/EC), aiming to act
in an efficient and incisive way on the major emission sources in order
to achieve significant benefits as compared to the reference scenario.
The flowchart of Fig. 1 presents the different stages considered in the
MAPLIA system.

The first steps of the flowchart consist in the definition of scenarios –
the reference scenario and a set of reduction scenarios which are repre-
sented by emission reduction measures addressed to one or more
drivers. Based on the defined emission reduction scenarios, resulting
emissions and air quality have to be quantified. For each reduction sce-
nario the emissions by activity sector directly connected to the respec-
tive driver(s) are estimated. The next step aims to determine the
effect of each emission reduction scenario on air quality by means of
air quality modelling. Apart from emissions, meteorological data and
initial and boundary conditions are required for the modelling applica-
tion. The following steps (number of cases, external and internal costs)
end up in the cost-benefit analysis. The concentration values estimated
by an air quality model, jointly with population data and morbidity and
mortality indicators (expressed as health impact functions), allow cal-
culating the number of attributable cases/days according to Eq. (1).
The number of cases is then translated into monetary values allowing
for the estimation of the avoided external costs (or health benefits)
per emission reduction scenario. These costs are compared with the in-
ternal/implementation costs of the respective scenario to identify the
most cost-efficient policies for air quality management. The latter
cost-benefit analysis has a clear added value in the decision-making
process.

The MAPLIA system offers a methodology that can be applied to dif-
ferent study areas through the preparation of a set of input information,
namely: a detailed emission inventory, emission reduction scenarios,
reduction measures and related costs, population distribution by age,
health indicators, and source-receptor links. The objective and main
goal of the MAPLIA system is the use of specific local data to assure
that outputs meet the specific needs of stakeholders and policy makers
in the region and provide effective support in the decision making pro-
cess at the local scale.
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3. Application to a case study

TheGrande Porto area (11municipalities)was selected for the appli-
cation of theMAPLIA system for the reference year 2012. It covers a total
area of 1024 km2 with a total population of N1.2 million inhabitants.
This region of Portugal is one of several EU zones that had to develop
and implement air quality plans (AQP) to reduce PM10 and NO2 con-
centrations (Borrego et al., 2012a, 2012b; Miranda et al., 2015). This
case study was selected based on the registered exceedances to the air
quality limit values and on the available AQP to beused as a basis for fur-
ther policy support.

3.1. Emission abatement measures and internal costs

The most updated national emission inventory report (APA, 2014),
for the year 2012, was used to develop the reference emissions case.
The annual emissions datawere disaggregated bymunicipality and allo-
cated to SNAP categories: commercial and residential combustion
(SNAP02); industrial combustion (SNAP03); production processes
(SNAP04); extraction and distribution of fossil fuels and geothermal en-
ergy (SNAP05); solvent and other product use (SNAP06); road trans-
port (SNAP07); other mobile sources and machinery (SNAP08); waste
treatment and disposal (SNAP09). Measures required to reduce PM10
and NO2 concentrations were investigated and selected for further as-
sessment. In this sense, the criteria used for the selection included: (i)
relative contributions of each activity sector to the total pollutant emis-
sions; (ii) types of exceedances (annual/daily) and themonitoring sites
where theywere registered; (iii) actions already included in the defined
and implemented AQP. According to the national emission inventory,
the share of NOx and PM10 emissions per activity sector for the Grande
Porto area identifies industrial combustion, residential combustion and
road traffic as the most relevant emission sectors. Following those
criteria, and knowing that the monitoring sites with higher concentra-
tions are located in urban and traffic sites, four abatement measures
were defined (more details can be found in Duque et al., 2016):

• Replacement of 10% of vehicles below the EURO3 class (diesel and
gasoline) by hybrid vehicles (HYB);

• Introduction of a Low Emission Zone (LEZ) for a specific area in Porto,
restricted for vehicles below EURO3 (LEZ);

• Replacement/reconversion of 50% of the conventional fireplaces by
more efficient equipment (residential combustion) (FIR);

• Application of clean technologies that allow a reduction of 10% in
PM10 emissions from production processes and industrial combus-
tion (IND).

Each oneof these local emission abatementmeasureswas character-
ized in terms of application rate, reduction efficiency, and implementa-
tion costs. The internal/implementation costs of the reductionmeasures
were calculated on an annual basis, taking into account the initial in-
vestment for replacement/acquisition and installation of the newequip-
ment or technology, as well as the operating costs including the repair
andmaintenance costs, based on the average lifespan of the equipment.

A total of 30,740 vehicles are involved in the measure considering
the replacement of 10% of the oldest vehicles (previous to EURO3 stan-
dards; EURO1 and EURO2) by hybrid carswhich are poweredbyboth an
internal combustion engine and an electricmotor, and emit, on average,
less pollutants than the conventional diesel/petrol cars (Soret et al.,
2014). To simulate the emissions related to this measure, the reference
vehicle fleet for the Grande Porto area was changed, and the TREM
model (Transport Emission Model for Line Sources) (Borrego et al.,
2004, 2006) was run for the new share of EURO1 + EURO2 vs hybrid.
Reference traffic emissions estimated using TREM were based on Ori-
gin/Destination matrices, traffic counts available for the Porto urban
area, average vehicle speed in each main arterial, and statistical data
on the vehicle fleet for Porto. The application of this measure resulted
in a 15% reduction in PM10 emissions, 5% in NOx emissions and 1% in
volatile organic compounds (VOC). This measure considers an addition-
al investment cost (compared to non-hybrid vehicles) of
2945 €·vehicle−1, reduced running costs (compared to non-hybrid ve-
hicles) of 163 €·vehicle−1·y−1 and an expected lifetime of 15 years.

The Low-Emission Zone (LEZ) defined in this study covers an area of
about 1.5 km2 in Porto with high traffic density, where one of the air
quality monitoring sites with NO2 and PM10 exceedances is located.
The considered measure implied that only vehicles above EURO3 were
allowed to circulate through this restricted area. The application of
this measure resulted in a reduction in PM10 and NO2 emissions of, re-
spectively, 0.4 and 10.8 ton per year. The LEZ measure entails monetary
charges with the installation of new signage (17.3 k€·km−2 and a life-
time of 25 years) and operationalization of surveillance (24.6 k
€·km−2·y−1) (based on CCDR-LVT, 2006).

Residential combustion is a major contributor to the total PM10
emissions in Portugal, and in the Porto urban area in particular (APA,
2014; Borrego et al., 2010). According to studies conducted by the Unit-
ed States Environmental Protection Agency (USEPA, 2009), replacing
traditional fireplaces by certified wood burning appliances can result
in a reduction of over 80% in PM emissions. In this context, the scenario
considers the replacement of 50% of the traditional fireplaces by more
efficient equipments (such as heat recovery systems). Taking into ac-
count the fuel (wood) consumption per district (Gonçalves et al.,
2012), the type of residential combustion equipment per sub-munici-
pality (INE, 2012), emission factors used by the Portuguese Agency for
the Environment (APA, 2014), and considering that the reconversion/
replacement of a conventional fireplace allows for a reduction of 70%
in PM10 emissions (GAINS database: http://gains.iiasa.ac.at/models), a
maximum reduction of 35% per square kilometre of PM10 emissions al-
located to the SNAP2 (residential combustion) was obtained. The mea-
sure FIR entails 17,543 units with an investment cost (replacement) of
840 €·unit−1 and an expected lifetime of 25 years.

Industrial combustion (SNAP3) and production processes (SNAP4)
are also important sources of total PM10 emissions, as reported by the
Portuguese emission inventory (APA, 2014). The emission reduction as-
sociated to this measure was calculated under the assumption that
PM10 emissions are reduced by 10% using new high-efficient clean
technologies in both macro-sectors, including de-dusters (e.g. cyclones
and electrostatic precipitators) as well as good practices in industrial
processes-storage and handling, leak detection and repair programs.
Based on the removal efficiencies and implementation costs of these
technologies (obtained from the GAINS database for Portugal; IIASA:
http://www.iiasa.ac.at), corresponding annual implementation costs
were determined and weighted for the study domain taking as a basis
the GAINS projections for economic development in Portugal.
3.2. Air quality impacts and external costs (benefits)

The above described abatement measures were selected and tested
individually and in combination, totalling 15 reduction scenarios. The
MAPLIA system was applied to each one of these scenarios.

The model selected to perform the air quality simulation over the
study region was “The Air Pollution Model” (TAPM) (Hurley et al.,
2005), developed by the Australia's Commonwealth Scientific and In-
dustrial Research Organisation (CSIRO). This model is a 3-D Eulerian
model, composed of two modules which predict meteorology and air
pollution concentrations based on fundamental fluid dynamics and sca-
lar transport equations. Technical details of the model equations, phys-
ical and chemical parameterisations, as well as its numerical methods,
are described in Hurley et al. (2005). This modelling system has already
been extensively applied over Portugal and the Porto region, exhibiting
good agreement when compared/validated against observational data
(Borrego et al., 2012a, 2012b; Duque et al., 2016).

http://gains.iiasa.ac.at/models
http://www.iiasa.ac.at
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TAPM was run on chemistry mode with sulphur and fine particle
chemistry. The gas-phase is based on a semi-empirical mechanism enti-
tled the Generic Reaction Set (GRS), including 10 reactions for 13 spe-
cies. To simulate the air quality, for the year 2012, TAPM has been set-
up on three nested domains with a horizontal resolution of 10, 3 and
1 km side-length centred on Iberian Peninsula, Northern and Central
Regions of Portugal, and the Porto urban area, respectively. The Porto
urban area inner domain covers an area of 80 km × 80 km. Background
concentrations were used by the model to initialize pollutant concen-
trations and were also used as inflow boundary conditions on the
outer grid. These background concentrations were obtained estimating
the annual average of the background air quality values measured by
the monitoring sites in the study region, during 2012.

The annual emission data for each pollutant and activity sector was
spatially and temporally disaggregated using a top-down approach
(Monteiro et al., 2007) in order to obtain the required resolution for
the selected simulation domain. SNAP01 (energy production) emission
sources and the larger sources of SNAP03 and 04 were considered as
point sources, amounting to a total of 8 point sources within themodel-
ling domain. For the SNAP02 emissions (from residential combustion)
activity data were obtained based on regional activity data disaggre-
gated at sub-municipality level and taking into account the number of
households with heating systems, which were characterized in terms
of equipment type and fuel used. The amount of fuel consumed and
emission factors per residential combustion device were used for the
emission calculation. More details can be found in Duque et al. (2016).
Road transport emissions (SNAP07) were spatially disaggregated
through the top-down approach, but main roads in the urban area of
Porto andmotorwayswere considered as line sources. These line source
emissions were estimated using the TREM model, based on available
traffic counts and statistical data of the fleet composition. The TAPM
model simulations included the reference and reduction scenarios.

The human health impacts derived from the achieved air quality
state for the different reduction scenarios, considering a 1 km2 spatial
resolution simulation grid, were quantified using Eq. (1). These health
impacts were analysed through morbidity and mortality indicators as-
sociated with air concentrations of PM10 and NO2 due to short and
long-term exposure. The information included in Fig. 2 and population
data by age group (extracted from the National Statistical Institute
Fig. 2. Epidemiological data used to estimate health benefits of the reduction scenarios. Notes:
based on Pervin et al. (2008), and updated for the reference year 2012; Cost per YOLL = Year
air pollution.
database; Census 2011) at the subsection level, were used. The number
of cases and the annual costs per health indicator allowed calculating
avoided costs (health benefits) per reduction scenario. For each health
indicator, values were expressed as annual average costs (Pervin et al.,
2008), taking into account the duration and chronic effects of the dis-
ease (Fig. 2).

Figs. 3 and 4 present the spatial distribution of annual concentration
averages (μg·m−3) obtained for the reference case and for the scenario
considering all emission reduction measures (in terms of percentage)
and the human health benefits or avoided external costs (€·y−1) for
this total reduction scenario, for PM10 and NO2, respectively.

Model simulation results for the reference scenario show higher an-
nual averages for both pollutants ([PM10] N 30 μg·m−3 and
[NO2] N 25 μg·m−3) over Porto and the surrounding area mainly,
where concentrations exceeding the legislated limit values are expected
(see the first map of Figs. 3 and 4). The remaining domain is character-
ized by low annual concentrations ([PM10] ≅ 15–20 μg·m−3 and
[NO2] ≅ 10 μg·m−3). According to Duque et al. (2016), the comparison
with observed values indicated that TAPM over-predicts PM10 concen-
trations in the urban area and under-predicts NO2.

The largest reductions in PM10 annual concentration are obtained
for the application of FIR and IND measures and a combination of
them (Duque et al., 2016). Regarding NO2, the HYB measure is the one
that contributes most to the reduction in NO2 annual concentrations
over the study region. The combination of all referred measures
(HYB + FIR + LEZ + IND) leads to a reduction of 4.5% at most for
PM10 and NO2 pollutant concentrations – mainly over Porto for PM10
and extended across the entire study region for NO2. This corresponds
to reductions of up to 2.8 μg·m−3 for PM10 and up to 1.2 μg·m−3 for
NO2.

The spatial pattern of the human health benefits shows the expected
positive correlation between the population density and the health ben-
efits obtained from the emission reduction scenarios. It means, there-
fore, that in densely populated areas the potential health benefits of
the reduction scenarios are larger than in suburban/rural areas. Further-
more, these abatement measures are focused on the main activity
sources, mostly concentrated in urban centres, and therefore air quality
improvements in relation to the reference scenario are more significant
in these air pollution hotspots. The largest contribution for health
IR = Incidence Rate; RR = Relative Risk; MR= Mortality Rate (WHO, 2013b); Costs are
s of Life Lost, represents a monetary value attributed to the loss in life expectancy due to



Fig. 3.Modelling results for PM10 (annual averages): (a) PM10 concentration (μg·m−3) for the REF scenario; (b) percentage reduction of PM10 concentrations between the REF and the
scenario including all the reduction measures; (c) human health benefits (€·y−1) for the total reduction scenario.
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benefits derives from the reduction in PM10 concentrations in the
Grande Porto municipalities, especially in Porto, Matosinhos, Maia and
Vila Nova de Gaia. The exception is the LEZ scenario, whose effects are
only felt in the influence area of the proposed LEZ.

Regarding the health benefits from reductions in NOx concentra-
tions, these are much lower than those for PM10 and are only evident
for the HYB and LEZ scenarios. Note that the fireplaces reconversion
(FIR) is mostly focused on reducing PM10 levels, and it was assumed
that the installation of industrial clean technologies (IND) would only
affect PM10 emissions. Moreover, the NOx benefits are restricted to a
few cells of the modelling domain, corresponding to the areas where
HYB and LEZ measures are applied, although for LEZ the air quality im-
provement regarding NO2 is small (lower than 0.6%).

As presented in Fig. 5, analysis of the average air quality improve-
ment for PM10 and NO2 for the entire study domain versus total health
benefits for the tested reduction scenarios, shows that these two
variables are linearly correlated. This linearity occurs due to the arith-
metic operation used to calculate the health impacts (Eq. (1)), keeping
the exposed population and the impact functions as spatially constant
elements to all scenarios.

Fig. 5 clearly shows which reduction scenarios mostly contribute to
air quality improvement in the study domain. Comparing the health
benefits provided by each pollutant, it is obvious that health benefits
from PM10 air quality improvement are much higher (two orders of
magnitude) than the ones related to NO2. In terms of individual mea-
sures application, the industry scenario (IND) is most effective to
abate PM10 air pollution levels (average improvement of 0.61%),
while the Low Emission Zone scenario (LEZ) is least effective to reduce
PM10 concentrations (almost no improvement due to restricted influ-
ence area) in the Grande Porto area. The hybrid vehicles measure
(HYB) resulted to be most effective in improving NO2 air quality. The
same is not verified for the IND scenario, as the measures considered/



Fig. 4. Modelling results for NO2 (annual averages): (a) NO2 concentration (μg·m−3) for the REF scenario; (b) percentage reduction of NO2 concentrations between the REF and the
scenario including all the reduction measures; (c) human health benefits (€·y−1) for the total reduction scenario.
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included do not have impact on this pollutant. The reduction scenario
combining all measures (HYB + FIR + LEZ + IND) leads to a reduction
in PM10 air pollution of almost 1% (0.97%) and a reduction in NO2 of
1.8%, corresponding to an expected health benefit of 8.9 million €/
year, for which NO2 contributes with less than 90 thousand €.

3.3. Cost-benefit assessment

The application of the MAPLIA system was completed with a com-
parison of the internal/implementation costs and health benefits (or
avoided external costs) associated with each scenario, taking as basis
the year 2012. Table 1 summarizes the estimated values (in M€/year)
of internal and external costs (benefits), for themost relevant reduction
scenarios tested and considering the aggregate effect of PM10 and NOx
pollutants.

The net benefit per reduction scenario corresponds to the difference
between the total health benefits (for NOx and PM10 and considering
both short and long-term effects) and the total implementation costs
(in M€/year). Table 1 shows that the fireplaces' scenario (FIR) is proba-
bly the best strategic option to improve air quality and reduce negative
health impacts, as this abatementmeasure provides largest net benefits
(1.0 M€/year) with a benefit-cost ratio of 2.25. Furthermore, the signif-
icant impact of this scenario when combined with other measures is
notable.
4. Conclusions

The traditional approach used in air qualitymanagement, particular-
lywith respect to the adoption ofmeasures to improve air quality, is not
regularly based on the integrated assessment of the health and econom-
ic impacts of emissions abatement measures. Moreover, Air Quality
Plans (AQP) rarely include a cost-benefit analysis, which is essential
for decision-making.



Fig. 5.Health benefit obtained for different values of air quality improvement (PA) for PM10 (a) and NO2 (b). Points are the values for the individual reduction scenarios in Grande Porto
(PA). The line corresponds to the benefit function (PAB).
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This work aimed to overcome these limitations through the devel-
opment and application of an integrated assessment system that ad-
dresses the full chain of cause-effects (from emissions through to
impacts) for the evaluation of potential measures to include in an
urban AQP. This approach not only includes the traditional steps of the
evaluation of measures, such as the expected emissions reduction and
resulting air quality improvement, but also considers the population ex-
posure and health impacts, quantified in terms ofmorbidity andmortal-
ity as well as in terms of costs.
Table 1
Cost-benefit analysis of the reduction scenarios.

Reduction scenario Implementation costs (M€·y−1) Health be

HYB 2.0 1.5
FIR 0.8 1.8
LEZ 3.8E−2 3.9E−2
IND 5.8 5.6
HYB + FIR 2.8 3.3
FIR + IND 6.5 7.4
HYB + FIR + LEZ + IND 8.6 8.9
An IAM system specifically adapted to urban areas was developed
(the MAPLIA system) following a scenario analysis approach and ap-
plied to a Portuguese urban region – the Grande Porto Area. A group
of 15 emission reduction scenarios was defined based on combinations
of the following 4 emission reduction measures: (i) replacing 10% of
light vehicles below EURO3 by hybrids; (ii) introducing a Low Emission
Zone in the city of Porto banning vehicles below EURO 3; (iii) replacing/
reconverting 50% of open wood stoves; and (iv) application of particle
reduction technologies allowing reducing 10% of PM10 emissions from
nefits (M€·y−1) Net benefit (M€·y−1) Benefit-cost ratio (BCR)

−0.5 0.75
1.0 2.25
1.0E−3 1.03
−0.2 0.97
0.5 1.18
0.9 1.14
0.3 1.03
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industrial combustion and production processes. All these scenarios
were evaluated in terms of emissions, air quality, health and cost-bene-
fit analysis. Results revealed that, among the 15 scenarios analysed, the
resulting scenario including all 4 measures lead to a total net benefit of
0.3 M€·y−1. The largest benefit is obtained for the scenario considering
the conversion of 50% of open wood stoves into heat recovery wood
stoves. Although the implementation costs of this measure are high,
the benefits outweigh the costs. The most cost-efficient scenario is the
one that combines the heat recovery wood stove measure and the re-
placement of 10% of passenger cars below EURO 3 by hybrid vehicles.
Notwithstanding, the positive effect with regard to health is
underestimated as there are other health indicators (beyond the
analysed indicators) evidencing a close relationship with the air pollu-
tion. It should also be noted that a comprehensive cost-benefit analysis
should also take into account the effects of air pollution to the environ-
ment, which were not considered in the present study and may lead to
much higher net benefits.

It is not necessarily straightforward to compare results from cost-
benefit studies on air quality improvement, as scales of analysis, pollu-
tion sources, levels and types, consideredmeasures and locations of im-
plementation, climate, geographic and demographic conditions, and
included cost and benefit categories vary widely across studies. Hence,
cost-benefit indicator values vary widely across studies. For example,
EPA (2011) estimates benefit-cost ratios of between 25 and 40 associat-
ed with meeting the US 1990 Clean Air Act Amendment, Pearce and
Koundouri (2004) obtain benefit-cost ratios of between 1 and 18 asso-
ciated with meeting the EU Registration, Evaluation and Authorisation
of Chemicals (REACH) chemicals policy, and the AEA (2010) estimate
benefit-cost ratios of between 12 and 37 (EU-27) and 44 and 144 (Por-
tugal) associated with meeting the position outlined in the Thematic
Strategy on Air Pollution (TSAP). Avoided external cost studies show
that meeting the EU limit values of Directive 2008/50/EC (for NO2 and
PM10) in Spain (Vedrenne et al., 2015) can provide benefits of up to
5.5M€ by 2020 (with 40% of these due to health benefits), while the im-
plementation of emission reduction measures (including PM10, SO2

and O3) in thewider Athens area (Mirasgedis et al., 2008) are estimated
to provide benefits of up to 39 M€·y−1 (with industrial sector benefits
ranging between 0.1 k€·y−1 and 10 M€·y−1).

In summary, theMAPLIA system is an approach suited to support the
policy decision, allowing better management of human, technical and
financial resources, public and private, contributing to a greater accep-
tance and facilitated implementation by the agents involved, and to-
wards improved air quality and better quality of life of citizens.
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