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Abstract: Plume rise determination is one of the main processes encountered in air pollution 
modeling. Therefore, the most commonly used methods for introducing plume rise in dispersion 
models are presented. They encompass simple but robust and documented semi empirical 
formulations, easy to be implemented in operative models, and advanced plume rise models. 
Then, the problem of how to account for plume rise in Lagrangian dispersion particle models is 
addressed. Finally, special situations of plume rise, like the occurrence of an elevated inversion, or 
the presence of building and/or stacks features interacting with the plume, are investigated. 
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List of Symbols 
 
A   dimensional constant in Equation (57) [L3/4 M-1/4 T-1/4] 
Ai   drift coefficient for velocity in Equations (97) [L T-2] 
Ap   dimensionless constant in Equation (87) 
As   stack outlet area [L2] 
A1   dimensional constant in Equation (36) [T6/5 L-6/5] 
A2   dimensional constant in Equation (36) [T6/5 L-3/5] 
A3   dimensional constant in Equation (37) [T15/8 L-3/2] 
A4   dimensional constant in Equation (37) [T6/5 L-3/5] 

ϑA    drift coefficient for potential temperature in Equations (97) 
   [K T-1] 
a   drift coefficient in Equation (77) [L T-2] 
B    plume particle buoyancy [L T-2] 
B0   initial plume buoyancy [L T-2] 

ib    acceleration of air displaced through an inversion [L T2] 
bij   diffusion coefficient for velocity in Equations (97) [L T-3/2] 
bp   lower edge of the plume [L] 

ϑb    diffusion coefficient for potential temperature in Equations 
(97) [K T-1/2] 

C   parameter in Equation (138) [L-1/3 T] 
C0   dimensionless constant in Equation (77) 
cB   dimensional constant in Equations (92) [L2 T-5] 
cp     specific heat at constant pressure [L2 T-2 K-1] 
cw   dimensional constant in Equations (92) [L2 T-3] 
c1   dimensionless constant in Equations (91) 
c2   dimensionless constant in Equations (91) 
D   dimensionless parameter in Equation (139) 
D0   dimensional constant in Equation (57) [L] 
D1   dimensionless constant in Equation (57) 
D2   dimensional constant in Equation (57) [T K] 
d    spacing between adjacent stacks [L] 
ds   internal diameter of the stack outlet [L] 
d1   dimensionless constant in Equation (70) 
d2   dimensionless constant in Equation (70) 
d3   dimensionless constant in Equation (71) 
d4   dimensionless constant in Equation (72) 
dW   random increment in Equation (77) 
dωB   random increments for buoyancy in Equations (84) 

[T1/2] 
dωj   random increments for velocity in Equations (97) [T1/2] 
dωw   random increments for velocity in Equations (84) [T1/2] 

ϑωd    random increments for potential temperature in  
   Equations (84) [T1/2] 
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E   turbulent kinetic energy [L2 T-2] 
En   dimensionless enhancement factor 
f   dimensionless stack tip downwash correction factor  

′f    dimensionless fraction of the plume trapped below inversion  
fb   atmospheric turbulence buffet frequency [T-1] 
Fb     buoyancy flux parameter [L4 T-3] 

i
bF    buoyancy flux of i-th particle [L4 T-3] 

Fe   plume buoyancy flux at the end of bending-over phase [L4 T-3] 
Fj   buoyancy of the j-th stack [L4 T-3] 
Fm   momentum flux parameter [L4 T-2] 

*mF    dimensionless momentum flux 
i

mF    momentum flux of i-th particle [L4 T-3] 
Fr   dimensionless Froude number  

*F    dimensionless buoyancy flux  
G   plume volume in Equations (79) [L3 T-1] 
Gs   G value at stack outlet [L3 T-1] 
g   acceleration due to gravity [L T-2] 
kv   dimensionless added mass  
H   upward surface sensible heat flux times ( )ϑρapcg  [L2 T-3] 
H*   dimensional parameter in Equation (57) [L] 
Hb   building height [L] 

iH    merging point height in Equation (138) [L] 
Hj   height of the j-th stack in Equation (138) [L] 

maxH    highest stack in Equation (139) [L] 

minH    lowest stack in Equation (139) [L] 
h   mixing height [L] 
h′   inversion height with respect to stack top [L] 
he   effective stack height [L] 
ht   height of the base of atmospheric thermal discontinuity [L] 
Lb   buoyancy length scale [L] 
Le   effective length [L] 
Lm   momentum length scale [L] 
Me   plume momentum flux at the end of bending-over phase [L4 T-2] 
N   Brunt-Väisälä frequency [T-1] 
N'   modified Brunt-Väisälä frequency [T-1] 
n   dimensionless number of stacks  
Pb   dimensionless buoyancy flux in Equation (127)  
Ps   dimensionless buoyancy flux in Equation (136)  
Qf   total heat release rate of a flare [M L2 T-3] 
Qh   stack effluent heat emission rate [M L2 T-3] 
Qm   stack effluent mass emission rate [M T-1] 
R   plume radius [L] 
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Re   plume radius at end of bending-over phase [L] 
Rs   dimensionless initial plume radius 
R0   dilution radius [L] 
ra   radius of air eddies [L] 
rs   internal radius (or equivalent radius) of the stack outlet [L] 

3
waS    third moment of ambient Eulerian PDF [L3 T-3] 

S   dimensionless parameter in Equation (137) 
s   stability parameter [T-2] 
sc   distance along the centerline [L] 
Ta   ambient temperature [K] 
Ta0   ambient temperature at stack outlet height [K] 
Te   Eulerian time scale [T] 
Tm   Lagrangian time scale in Equation (90) [T] 
Ts0   temperature of stack effluent at stack outlet [K] 
Tp   Lagrangian time scale of the plume [T] 
t   travel time [T] 
tp   upper edge of the plume [L] 
t0   initial turbulent timescale of the plume particle [T] 
Ua   wind speed that can vary with height [L T-1] 
Ui   particle velocity component (i = 1, 2, 3) [L T-1] 
Usc   velocity along the centerline [L T-1] 
Uz(t)   mean vertical wind component [L T-1] 
u   mean uniform horizontal wind speed in Equation (59) [L T-1] 
up   horizontal particle velocity [L T-1] 
u′(t)   turbulent velocity fluctuation in Equation (77) [L T-1] 

*u    friction velocity [L T-1] 
u0    mean wind speed at the stack outlet height [L T-1] 
u5   wind speed at the 1.5 zs  [L T-1] 

av′    r.m.s. velocity of an air eddy with respect to the plume [L T-1] 
vs0   effluent emission speed at stack outlet [L T-1] 
va   relative velocity of two particles [L T-1] 
ve   entrainment velocity [L T-1] 
W   vertical velocity of the plume [L T-1] 

bw    buoyancy contribution to the vertical velocity [L T-1] 
wm   momentum contribution to the vertical velocity [L T-1] 
wp   vertical velocity of the particle [L T-1] 
w′(t)   turbulent velocity fluctuation in Equation (66) [L T-1] 

*w    convective velocity scale [L T-1] 
Xi   particle position component (i = 1, 2, 3) [L] 

*X    dimensionless downwind distance  
Xz   plume particle’s vertical position [L] 
x     downwind distance from stack [L] 
x*   function of downwind distance from Equation (56) [L] 
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*
cx    critical distance defined by Equation (36) [L] 

xf   downwind distance of maximum plume rise [L] 
xT   length defined by Equation (56) [L] 
y   lateral space coordinate or radial distance from axis [L] 
z   elevation a.g.l. [L] 

eqz′    equilibrium height with respect to the stack top [L] 
zs   stack height [L] 
α   dimensionless constant in Equations (79) 
αB   dimensionless constant in Equations (92) 

vα    dimensionless constant in Section (4.3.3) 
αw   dimensionless constant in Equations (92) 
β   dimensionless classic entrainment parameter 
β1   dimensionless neutral entrainment parameter in Equation (116) 
β2   dimensionless stable entrainment parameter in Equation (117) 
βj   dimensionless jet entrainment parameter in Equation (116) 
γ   dimensionless constant in Equations (79) 
γ1   dimensionless constant in Equation (80) 
γ2   dimensionless constant in Equation (82) 

minH∆  maximum single plume rise from lowest stack in Equation 
(139) [L] 

NH∆    final rise for merged plumes [L] 
∆h   final plume rise [L] 

)(th∆    plume rise as a function of travel time [L] 
∆h x( )    plume rise as a function of distance downwind of stack [L] 

h′∆    final plume rise corrected for the stack tip downwash [L] 
h ′′∆    actual plume rise in Equation (123) [L] 

∆hd   plume rise of a building downwashed plume [L] 
∆hi   thickness of the inversion layer [L] 
∆h1   plume rise from a single stack in multiple sources [L] 

maxh∆    maximum plume rise [L] 

cT∆    critical temperature difference [K] 

0T∆  temperature difference between air and plume at the stack 
outlet [K] 

∆t   time step [T] 
∆u difference in the horizontal velocity between the plume and 

the ambient environment [L T-1] 
∆z   vertical increment [L] 
∆ϑ*   dimensional parameter in Equation (57) [K] 
∆ϑi   potential temperature jump of the inversion [K] 
∆ϑm   maximum excess temperature [K] 
∆ϑ100   potential temperature variation over 100 m in Section 2.7.1 [K] 
δ   dimensionless parameter in Equation (133) 
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z∂∂ϑ    vertical gradient of absolute potential temperature [K L-1] 
εa   ambient rate of dissipation of turbulent kinetic energy [L2 T-3] 
εB   dissipation rate of buoyancy of the plume particle [L2 T-5] 
εm   dissipation rate in Equation (96) [L2 T-3] 
εp rate of dissipation of turbulent kinetic energy in the plume 

[L2 T-3] 
εw   dissipation rate of velocity of the plume particle [L2 T-3] 
λ   dimensionless parameter in Equation (132) 

eqη    dimensionless parameter in Equation (133) 
φ   angle between the horizontal and the centerline [deg] 
µa   air molecular weight [M mol-1] 
µs   emission molecular weight [M mol-1] 
ρa   density of ambient atmosphere [M L-3] 
ρa0   ambient density at stack outlet height [M L-3] 
ρs   density of effluent [M L-3] 
ρs0   density of effluent at stack outlet [M L-3] 
σy0   enhanced horizontal dispersion coefficient [L] 
σz   plume width [L] 
σz0   enhanced vertical dispersion coefficient [L] 

2
upσ    longitudinal velocity variance due to the plume rise [L2 T-2] 
2
vpσ    crosswind velocity variance due to the plume rise [L2 T-2] 
2
waσ    second moment of ambient Eulerian PDF [L2 T-2] 
2
wσ    vertical wind velocity variance [L2 T-2] 
2
wpσ    vertical velocity variance due to the plume rise [L2 T-2] 

aϑ    ambient potential temperature [K] 

pϑ    potential temperature of the plume particle [K] 
τ   dimensionless travel time 
 
 
1 Introduction 
 
The behavior of a chimney plume in the atmosphere is a rather complex process, 
which is influenced by the emission characteristics, the nearby terrain features, 
the actual wind profiles, stratification (vertical gradient of potential temperature) 
and turbulence. Basically, plumes emitted into the atmosphere rise under the 
action of their initial momentum and buoyancy (if they possess a temperature 
which is greater than the ambient temperature). For power plants and other 
moderate-to-large industrial sources, the major contribution to the rise is from the 
heat flux. For example, a modern power plant typically discharges ≈ 100 MW of 
heat from its stack. These are called buoyant plumes. In such conditions plumes 
can rise for hundreds of meters. Initial momentum can be important for smaller 
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sources, with little or no buoyancy, such as those typically found in light 
manufacturing. Plumes from these sources are referred to as jet plumes. 
 
A jet plume, moving through the ambient atmosphere, experiences a shear force 
at its perimeter, where momentum is transferred from the jet to the surrounding 
air. This causes an increase of the plume diameter and a decrease of its velocity. 
This phenomenon is known as entrainment. In a buoyant plume, air is entrained in 
the same way as in a jet and the buoyancy forces help maintain the motion of the 
plume as it transfers momentum to the surrounding air. For this reason, buoyant 
plumes generally rise higher than jet plumes. The entrained ambient air mixes 
with the plume air, thus diluting the plume components before they reach ground 
level and, in the case of buoyant plumes, decreasing the average temperature 
difference between air and plume. In a calm atmosphere, plumes rise almost 
vertically, whereas in windy situations they bend over. In this case, the velocity of 
any plume parcel is the vector composition of horizontal wind velocity and 
vertical plume velocity in the first stage and then approaches the horizontal wind 
velocity. 
 
The motion of bent over plumes can be schematically divided into three phases 
(Slawson and Csanady, 1967; 1971): an initial phase, in which the self-generated 
turbulence, due to the action of their mechanical and thermal energy, prevails; an 
intermediate phase, where the ambient turbulence in the inertial sub-range is 
important; a final phase, in which the main mechanism is the mixing due to the 
large atmospheric energy containing eddies (see Figure 1). 
 

 
 

Figure 1. Two possibilities of unstable plume behavior (adapted from Slawson 
and Csanady, 1971). [Reprinted with permission from Cambridge University 
Press] 
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Effective plume height he (elevation of plume centerline relative to ground level) 
results from the sum of stack height zs and plume rise ∆h (Figure 2) 
 

hzh se ∆+=      (1) 
 
Thus, a correct estimation of buoyant plume rise is one of the basic requirements for 
the determination of ground level concentrations of airborne pollutant emitted by 
industrial stacks. In fact maximum ground level concentration is roughly inversely 
proportional to the square of the final height he. For this reason, in many 
 

virtual 
source plume 

centerline 
∆h

he 

zs 

 
 

Figure 2.  The plume rise: schematic representation. 
 
simple dispersion models, stack gases are assumed to be emitted from a virtual 
source located at a height he (see Figure 2) along the vertical above the stack. 
 
The description of plume rise is based on the fluid dynamic equations, namely on 
the mass, momentum and energy conservation equations. A complete, exhaustive 
theory is not yet available. Therefore some simplifying assumptions need to be 
made. These will give rise to simplified models that can just take into account the 
main variables of the examined case. 
 
Plume rise formulae can be ranked either empirical or theoretical, but the 
distinction is not so clear: 

• the empirical formulae are based almost exclusively on experimental data 
both for their numerical parameters and for their functional form 

• the theoretical formulae, in spite of including some parameters with an 
experimental origin, have a functional form based on the solution of 
equations expressing laws of mass, momentum and energy conservation 

  



6   Plume Rise  111 

 
Some formulae provide the plume rise as a function of the distance, but most of 
them provide a constant value (final plume rise) that the plume reaches at a large 
downwind distance. These formulae contain height depending atmospheric 
variables normally specified at the stack outlet height. 
 
Several studies and review works have provided semi-empirical formulae for 
evaluating ∆  (e.g., Holland, 1953; Brummage, 1966; Bringfelt, 1969; Fay et al., 
1970; Carpenter et al., 1971; Briggs, 1975; Strom, 1976; Hanna et al., 1982; and 
many others); others have provided more complex and comprehensive 
descriptions of several physical interactions between the plume and the ambient 
air (e.g., Golay, 1982; Netterville, 1990). Relevant and exhaustive review papers 
on the plume rise subject can be found in the literature, such as, for instance, 
Briggs (1975) and Weil (1988). In this chapter, we will utilize a great deal of 
material from these reviews. 

h

 
For many specific applications, literature supplies functional forms and 
empirically determined parameters, but such models may provide wildly 
inaccurate results, if they are used beyond the context where they have been 
obtained. In uncertain cases, Briggs (1975) recommends to use, in the application, 
the formula that provides the minimum plume rise; this result is “the most 
conservative”, since it gives rise to the maximum values of concentration 
expected at the ground, thus limiting the risk of a possible underestimation. It is 
hard to specify clearly the accuracy of plume rise formulae: some discordance up 
to 25% between the observed and the expected value are not unusual. 
 
This chapter, which is concerned with plume rise from continuous releases, 
focuses on: 

• semi-empirical formulations 
• advanced plume rise models 
• particle models for plume rise 
• special cases (like building downwash, penetration of elevated inversion, 

multiple source, flare stacks, fires and so on) 
 
The semi-empirical formulations, expressed as analytical relationships, have a 
functional form obtained from the solution of mass, momentum and energy 
conservation equations in simplified conditions (such as steady conditions, 
uniform wind and stability) and their numerical parameters are generally deduced 
from experimental data. These are the plume rise estimations mostly used in 
regulatory model applications. 
 
In the advanced plume rise models the conservation equations are numerically 
integrated, thus giving practical solutions for varying winds and thermal structure. 
Due to present days computer capabilities, these models may also be used for 
regulatory applications. However it cannot be automatically accepted that these 
fully 3D models always yield results better than simpler models due to the 
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difficulty, in some applications to real cases, of getting the needed input data with 
the necessary time and space resolution. 
 
The particle models for plume rise are relatively new methods, not yet widely 
used for regulatory purposes. We think that it is important to present and discuss 
them in some detail since the Lagrangian approach is a more natural way of 
describing the dispersion process (Sawford, 1985). Furthermore these are 
probably the methods of the future and allow a high resolution, particularly the 
small time behavior of plume dispersion (Nguyen et al., 1997) 
 
The section on special cases covers many aspects of the plume rise phenomenon 
that are of practical importance in many applications. 
 
Our discussion of plume rise addresses fundamental aspects and major problems, 
but it is not exhaustive. We intend neither to make any ranking of the models 
presented in the next sections, nor to recommend which model is the best for a 
specific application, because we want to avoid any subjective judgment which 
may be also influenced by the particular national regulatory laws. We wish to 
present a review of updated and validated existing techniques that can be used by 
modelers according to their specific needs. Even if no guidance is given whether a 
reader should use one of the models out of those suggested for a specific problem, 
the general rule might be to preferably use those formulas, if any, that are 
validated, recommended or suggested by National Environmental Protection 
Agencies. Being used and tested by hundreds of users, these models will, at least, 
guarantee that the major bugs and/or uncertainties were identified and amended 
and unrealistic results avoided. 
 
 
2 Semi-Empirical Formulations 
 
2.1 Governing Equations 
 
As above anticipated, the differential equations expressing the conservation of the 
total fluxes of mass, momentum, and energy through a plume cross section (e.g., 
Morton et al., 1956; Briggs 1975; Weil, 1988) are the basis of all the analytical 
plume rise models. These equations are closed using the entrainment assumption 
(Morton et al., 1956), which prescribes that the entrainment velocity, i.e. the rate 
at which ambient air is entrained into the plume, is proportional to the mean local 
rise velocity. It may be worth mentioning that Priestley (1956) provided an 
alternative entrainment assumption, based on energy arguments, that gives the 
same basic plume rise results as Morton et al. (1956). 
 
The following simplifications are made: the plume rises in a steady, horizontal 
wind of constant direction and variable with height speed Ua(z); stratification, if 
present, is constant with the height; plume cross section is circular with radius R; 
plume properties (mass, velocity, temperature) have a “top hat” distribution (that 
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is to say in each section the cited quantities are constant inside the plume and null 
outside); the plume pressure is the same as in the local environment; the density 
differences are sufficiently small to allow making the Boussinesq approximation; 
since the efflux volume quickly mixes with a large volume of ambient air, the 
effluent has the same molecular weight and specific heat as air. 
 

 
 

Figure 3.  Schematic and nomenclature for plume in a crosswind (adapted 
from Weil, 1988). [Reprinted with permission from American Meteorological 
Society]. 

 
In the case of a crosswind, conservation of mass, horizontal momentum, vertical 
momentum and energy are given respectively by (Weil, 1988) 
 

( ) WRRU
ds
d

sc
c

β22 =      (2) 

 

( )
dz

dU
WRuRU

ds
d a

sc
c

22 −=∆    (3) 

 

( ) ( )
s

sa
sc

c

gRWRU
ds
d

ρ
ρρ −

= 22    (4) 

 
2sWR

ds
dF

c

b =       (5) 
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where (see also Figure 3): sc and Usc are the distance and velocity along the 
centerline, β is the dimensionless entrainment parameter, W is the plume vertical 
velocity, ∆u is the difference in the horizontal velocity between the plume and the 
ambient environment, g is the acceleration due to gravity, ρa and ρs are the air and 
plume density, respectively,  is the buoyancy flux defined by bF
 

( )
a

sa
scb gRUF

ρ
ρρ −

= 2     (6) 

 
and s is the stability parameter defined by 
 

z
gs a

a ∂
∂

=
ϑ

ϑ
     (7) 

 
aϑ being the potential temperature of the air and za ∂∂ϑ  its vertical gradient. 

The plume trajectory, ∆ , can be obtained from the above equations and from 
the following relationships (kinematic conditions) 

( )xh

 

scc U
W

ds
hd

=
∆ ,  

sc

a

c U
uU

ds
dx ∆+

=    (8) 

 
For sake of completeness, and for reference to previous and/or related work on 
the plume rise, the following remarks may be important. 
 

bF  is related to the heat emission rate  by the following relationship hQ
 

aaphb TcgQF ρπ=     (9) 
 
where Ta = temperature of the air; 

cp = specific heat of air at constant pressure. 
 
Qh is given by the following equation 
 

)TT(cQQ 0a0spmh −=    (10) 
 
where Qm = effluent mass emission rate; 

Ts0 = absolute temperature of effluent at stack outlet; 
Ta0 = absolute temperature of ambient atmosphere at stack outlet height. 

 
Qm may be expressed in terms of other variables as follows 
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00 sssm vAQ ρ=      (11) 
 
where =0sρ mass density of effluent at stack outlet; 
 As = stack outlet area; 
 vs0 = effluent emission speed at stack outlet. 
 
Using Equation (11) and the following equality 
 

( ) ( )000000 saaass TTT ρρρ −=−    (12) 
 
Qh can be expressed in terms of the mass density of ambient air at stack outlet 
height, ρ a0, and of the pollutants, 0sρ , as follows 
 

)( 0000 sapassh cTvAQ ρρ −=     (13) 
 
In the plume rise formulae for jet plumes, where the initial momentum plays the 
major role in the rising process, is substituted by the momentum flux Fm, given 
by the following equation 

bF

 

0

02
0

a

ss
sm

AvF
ρ
ρ

π
=     (14) 

 
Notice that the buoyancy and momentum fluxes - Equations (6) and (14) - by 
convention are divided by π . This convention derives (Briggs, 1984) from the 
assumption of round top hat profile of all the plume quantities in the early plume 
rise studies. This assumption leads to the presence of π  on both sides of the flux 
conservation equations. 
 
In some plume rise formulations (e.g., Hewett et al., 1971), the buoyancy flux is 
defined by ( ) ssa

2
scb gRUF ρρρ −= . According to Briggs (1972), this 

definition is equivalent to assuming that the buoyant force acts on a fluid of 
density sρ . However, the density of the fluid driven by the buoyant force is better 
approximated by aρ , since a turbulent plume is made up mostly of entrained fluid 
(Briggs, 1984). 
 
In some formulae, the Brunt-Väisälä frequency, N, defined as 
 

sN +=      (15) 
 
is used instead of the stability parameter s - see Equation (7). In stable conditions, 
the Brunt-Väisälä frequency is the natural frequency of oscillation of a fluid 
particle if perturbed from its equilibrium position; for plumes,  is the time 1−N
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scale for the depletion of the buoyancy flux and for the maximum rise in a stable 
environment (in the atmosphere a typical value of  is 1 min). 1−N

)

 
The formulae that are going to be presented in the following sections are mostly, 
but not exclusively, derived from Briggs (1969, 1972, 1975, 1984). Briggs 
formulae, together with some new result recently appeared in the literature due to 
other authors, have been incorporated into most of the U.S. EPA models 
(http://www.epa.gov/scram001/t22.htm). These formulae represent a reasonable 
compromise between accuracy and simplicity, even though, according to many 
(e.g., Henderson-Sellers and Allen, 1985), they may tend to overestimate the 
plume rise at large downwind distances. Note that some authors (Strom, 1976; 
Hanna, 1994) suggest, in the absence of particular expressions derived for 
specific problems, using Briggs formulae. 
 
It is worthwhile pointing out that Manins (1985) summarized evidence (from 
large fires, volcanic eruptions and clouds from thermonuclear explosions) 
showing that the vertical plume rise equation derived in the next section - 
Equation (45) - holds for over four orders of magnitude variation in rise height. 
 
2.2 Plume Rise in the Transitional Phase 
 
By solving the system of equations presented in Section 2.1, simple analytical 
expressions, easy to use in dispersion models, can be achieved. 
 
2.2.1 Neutral and Unstable Case 
 
Let us firstly consider the rise of a bent over plume in neutral conditions (s = 0) 
and uniform wind (no shear) and neglect ambient turbulence. At some distance 
from the source, plume can be considered as nearly horizontal and the following 
approximations can be made: U constU asc =≅ and W << Ua. From Equation (2) 
it follows that the plume radius grows linearly with height. In these stability 
conditions, Equation (5) implies that the buoyancy flux  is conserved. Thus,  
is expressed by means of its value at the stack outlet, in terms of, respectively, 
temperatures and densities 

bF bF

 
( )

0

00
0

s

ass
sb T

TTAvgF −
=

π
    (16) 

(
0

00
0

a

sas
sb
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ρ

ρρ
π

−
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Similarly,  is expressed by mF
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0s

0a2
s

2
0sm T

T
rvF =     (18) 

 

0a

0s2
s

2
0sm rvF

ρ
ρ

=     (19) 

 
where rs is the internal radius of the stack outlet. 
 
Note that, usually, in Equations (16) and (17), instead of As, we find rs (or, for a 
non-circular stack having an area As, the equivalent radius given by r ). 
It may be worth pointing out that for the emissions whose molecular weight, µ s, 
differs considerably from the air molecular weight, µ a, Hanna et al. (1982) 
suggests, in relation to Equation (16), replacing Ts0 with 

As s= π

ssT µ0 and Ta0 with 

aaT µ0 . 
 
The resulting equation of the plume centerline trajectory ( )th∆  is (Briggs, 1975) 
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Equation (20) takes into account both the buoyancy and initial vertical momentum 
contributions. In the very initial stage, the momentum dominates and the plume 
rise is described by 
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whereas, when t is larger than bm FF2  (about 10 s for many sources, Briggs 
1975) the buoyancy dominates and Equation (20) reduces to 
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Expressed as a function of downwind distance, Equations (20), (21) and (22) 
become 
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and 
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In order to use the above equations in practical models, the value of β, the 
dimensionless entrainment parameter, must be empirically established. In the bent 
over buoyant plumes (φ → 0, where φ is the angle between the horizontal and the 
centerline) β = 0.6, whereas for vertical buoyant plumes (φ → 900) β = 0.11 
(Briggs, 1975; Hoult and Weil, 1972). For jet plumes (Briggs, 1975, 1984) 
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In particular, Equation (25) becomes 
 

1
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3231
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This equation is widely known as the “two-thirds” law. It was confirmed by a large 
amount of experimental work (see Briggs, 1975 for a comprehensive summary). Figure 4 
is an example of the quality of the agreement found in the literature. Consequently, most 
practical models use the “two-thirds” law to describe the plume rise in the transitional 
phase under neutral and unstable conditions. However some models - see, for instance, 
AERMOD (U.S. EPA, 1998) or Weil et al. (1997) - use the complete Equation (20). In 
this case they use the value β = 0.6 for the momentum term too. 
 
By defining the momentum length scale  and the buoyancy length scale  as mL bL
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Equations (23 - 25) become 
 

 
 

Figure 4.  Observed trajectories of buoyancy-dominated plumes compared with the 
“two-thirds” law (from Weil, 1988). [Reprinted with permission from 
American Meteorological Society ]. 
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mL  and  allow an alternative criterion to establish in which range of downwind 

distances the buoyancy or the momentum dominates the plume rise: momentum 
dominates for 

bL

bm LLx 2<<  whereas buoyancy dominates for bm LLx 2>> . 
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2.2.2 Stable Case 
 
In case of a stable atmosphere (s = const, s ≠  0), again neglecting ambient 
turbulence, and considering uniform wind and the bent-over phase, integration of 
the conservation equations leads to the following expression (Briggs, 1975) 
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for '
0 Nux π≤ , where ( ) 2

1

v
2

1' k1sN += . The term, 1 vk+ , accounts for the so-
called “added mass” (Briggs, 1972, 1975, 1984; Weil, 1988, 1994). This added 
mass takes into account the momentum of the ambient air displaced by the rising 
plume. Consequently, the effective plume radius is larger than the visible plume 
radius. Many models did not consider this aspect that can explain the difference 
found in the value of the entrainment parameter from the measurements of plume 
rise in different stability conditions. Concerning the numerical value of the added 
mass, Briggs (1975) and Weil (1994) suggest vk1+  = 2.25. 
 
When the atmosphere is stable, ambient turbulence is very low and a plume levels 
off where its density difference with respect to ambient air approaches zero. For 
distances greater than '

0 Nuπ  a plume, in principle, overshoots its equilibrium 
height and displays a quickly damped oscillation. This was experimentally 
verified in some occasions (Briggs, 1975). However, often plumes approach an 
asymptotic height with no overshoot at all (Briggs, 1984). In this range of 
distances a plume drifts downwind with a very small increase in thickness, due to 
its mixing with stable, almost non turbulent, air. 
 
In the two asymptotic cases in which the momentum dominates ( ) or 
the buoyancy dominates ( ), the above equation reduces to, 
respectively 
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Equation (32), the “two third law” - Equation (27) - is recovered. 
 
2.3 Formulae for the Final Height of Buoyant Plumes 
 
Stable stratification is the only condition in which a plume levels off and, consequently, 
the definition of a final height is correct. Since in neutral and unstable conditions the 
buoyancy flux  is conserved, plumes cannot, in principle, level off. However, 
ambient turbulence significantly affects the buoyant plume growth. Another 
limitation to the continuous rise of the plume is the presence, above the mixing 
height, of a capping inversion (see Section 5.2). 

bF

 
The importance of assessing correct ways to determine the plume “final height” 
derives from the wide use of Gaussian models in dispersion calculations. These 
dispersion models disregard the transitional phase and assume that a plume is 
emitted by a virtual height (see Figure 2) located at a final effective height he, 
given by the sum of stack height zs and plume final rise ∆h - see Equation (1). 
 
2.3.1 Neutral and Unstable Case 
 
For neutral or unstable conditions, Briggs (1969) suggested using Equation (27) 
up to , and the following equation *
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for .  is a critical distance representing the downwind distance at which 
ambient turbulence begins to dominate the entrainment process, which can be 
expressed either by 
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  =*
cx 85

b3 FA     3455 −< smFb  
 

=*
cx 52

b4 FA     3455 −> smFb         (37) 
 
in which the values of the four dimensional constants are the 
following: 5656

1 ms16.2A −= , 5356
2 ms0.67A −= , 23815

3 ms0.49A −= , and 
5356

4 ms0.119A −= . 
 
In the case of fossil fuel plants with Q  of 20 MW or more, xc

* can be satisfactory 
approximated by the following equation 

h

 
=*

cx  10      (38) sz
 
Subsequently, Briggs (1975) made a distinction between neutral and unstable 
conditions accounting for the effects of ambient turbulence on the plume rise. 
While self-generated turbulence affects the entrainment process near the source, 
ambient turbulence (with both small and large scale eddies) becomes important 
further downwind. Small scale eddies (with typical length scale R≤ ), are 
responsible for the increase of the plume growth rate beyond that given by self-
induced turbulence. The breakup model (Briggs, 1984; Weil, 1988), assumes that 
plume rise finishes when ambient turbulence “breaks up” the self-generated 
structure of the plume, causing a vigorous mixing and, consequently, plume 
gradually loses buoyancy and momentum and eventually level off. Thus, this 
process leads to an asymptotic rise. According to Briggs, the plume breakup 
occurs when the ambient rate of dissipation of turbulent kinetic energy, εa, 
exceeds the one of the plume εp. Large scale eddies (updrafts and downdrafts in 
the CBL) may transport plume segments up and down, thereby dispersing the 
plume by vertical meandering and pushing some of them to the surface. When this 
happens, the time averaged ground level concentration is more dependent on how 
many times, during the averaging period, the plume touches the ground than on 
the height of the asymptotic rise. As a consequence, in the CBL case the surface 
sensible heat flux, which plays the major role in the development of updrafts and 
downdrafts is assumed to be the leading parameter. 
 
Therefore, for neutral conditions, in which the rise is limited by the mechanical 
ambient turbulence, Briggs proposed the iterative formula 
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where  is the friction velocity. For unstable conditions, in which the 
termination of the rise is due to the breakup by plume-scale, Briggs (1975, 1984) 
proposed 

*u
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where H is the upward surface sensible heat flux times ( )ϑρapcg . This equation 
may be also written as 
 

hF0.3h 53
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where 
 

( )hwuFF 2
*0b* =     (42) 

 
is the dimensionless buoyancy flux,  is the convective velocity scale and h is 
the mixing height. Notice that Hurley and Physick (1993) derived an expression 
similar to (41), but with the constant equal to 2 instead of 3. Examining the Willis 
and Deardorff (1983) CBL water tank experiment, they also found that a value of 
2 gave better agreement than the value 3. Best et al. (1990, reference from Hurley 
and Physick, 1993), found 2.3 by fitting field ground level concentration (g.l.c.) 
data. It is difficult to decide which constant value is to be preferred due to the lack 
of direct measurements of the final height in this conditions and to the large 
scatter in the indirect methods (g.l.c.). 

*w

 
2.3.2 Stable Case 
 
Let us consider Equation (32). This equation has its maximum, , for maxh∆

'
0 Nux f π= . Considering that for most hot plumes the effect of the initial 

momentum can be neglected, and that the leveling off or equilibrium height is 
observed to occur at about 5/6 maxh∆ , the following expression for the final height 
in stable and windy conditions ) is obtained 1sm1 −

0( >u
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0 )(8.2 suFh b=∆      (43) 

 
However, Briggs (1975; 1984) on the analysis of many field and laboratory 
observations, found that a slightly different numerical coefficient, 2.6, yielded the 
best fit to the observation. Consequently, Briggs recommended that the most 
accurate estimate of the plume final height in stable conditions is given by 
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For stable and calm conditions ), in which a plume rises nearly 
vertically, Briggs (1969), on the basis of previous work of Morton et al. (1956) 
and the examination of many field observations, proposed 

1
0 sm1( −<u

 
83410.5 −=∆ sFh b      (45) 

 
Subsequently, Briggs (1984) proposed for the same conditions 
 

sb rsFh 63.5 8341 −=∆ −     (46) 
 
2.4 Formulae for Jet Plumes in the Transitional Phase 
 
Also these formulae, as the ones for buoyant plumes, have a semi-empirical 
origin. 
 
The formulae for the transitional phase of jet rise, in neutral/unstable or stable 
conditions, were already introduced, namely Equations (24) and (33), in which 
the entrainment parameter β was defined by Equation (26). 
 
2.5 Formulae for the Final height of Jet Plumes 
 
For neutral conditions Briggs (1969) previously suggested 
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where ds is the internal diameter of the stack outlet, and later (1975, 1984) 
suggested 
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For unstable conditions Briggs (1975) suggested 
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and, subsequently, Briggs (1984) suggested for the same conditions 
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Also in Equations (48) and (50) β is defined by Equation (26). 
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Briggs (1969, 1975) suggested for stable and windy conditions ) 1

0 sm1u( −>
 

31211
0 )(5.1 −−=∆ suFh m    (51) 

 
This is obtained from considering that Equation (33) attains its maximum ∆  
for 

maxh
( )'

0f N2ux π=  and that the equilibrium height occurs at about 2/3 . maxh∆
 
For stable and calm conditions ( ), Briggs (1969, 1975) suggested, on 
the basis of a few observations, the following relationship 
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Taking into account that observations on the rise of jet plumes in stable 
conditions are very sparse, Briggs suggests considering the above formulae as 
tentative. 
 
2.6 Buoyant Plumes or Jet Plumes 
 
While for jets plumes or for highly buoyant plumes it is clear which type of plume 
rise formulae is to be used in practical dispersion applications, for cases in which 

0a0s0 TTT −=∆  (where 0T∆  is the temperature difference between emission and 
ambient air at the stack mouth) is greater than zero but not very high, whether the 
plume rise is dominated by momentum or by buoyancy must be determined. Two 
methods able to solve this problems are presented. The first one - see, for instance, 
AERMOD (U.S. EPA, 1998) - consists in using Equation (23) or (32) for the 
transitional phase in neutral/unstable or stable case, respectively. These cited 
equations include both contributions. The final plume height is calculated 
according to the methods resumed in Section 2.3. 
 
The second one is based on the U.S. EPA models PTPLU (Pierce et al., 1982), 
SCREEN3 (U.S. EPA, 1995a), and  ISC3 model (U.S. EPA, 1995b). In this method 
a critical temperature difference cT∆  is defined. If 0T∆  > cT∆  the plume has to be 
treated as buoyant; otherwise the plume has to be treated as a jet. cT∆  is defined 
as: 

• in stable atmosphere 
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• in neutral or unstable atmosphere 
 







≥

<
=

−−

−−

3-4
b

131
s0s

32
0s

-34
b

132
s0s

31
0s

c sm55FifgdTv0.056

sm55FifgdTv29.0
T∆   (54) 

 
The units of the two dimensional coefficients in Equation (54) are 3534 sm −  and 

3432 sm −  respectively. Equation (53) is obtained by equating Equations (44) and 
(51) and solving for 0T∆ . Similarly, Equations (54) are obtained by inserting 
Equations (37) into (27) and then equating Equation (47). 
 
2.7 Moore's and Netterville's Models for the Plume Rise of Buoyant 
 Plumes 
 
The formulae for the buoyant plume rise presented in the previous part of this 
Section form a complete and validated set of equations, widely used by the 
modeler community. However we briefly introduce also the Moore and 
Netterville models because we think that these two models are important for 
scientific and/or historical reason. As such, they may be of interest for the reader. 
Moreover, Netterville's parameterization of ambient turbulence is used later in the 
chapter (see Sections 3.2 and 4.4). 
 
2.7.1 The Moore Model 
 
Briggs models are, as we have seen above, derived by assuming that a plume is 
continuous, accounts for the crosswind and vertical spread and disregards the 
along wind spread and its diameter increases as it rises and travels downwind. For 
this reason this kind of approach is called “two-dimensional”. Instead Moore, 
(1974) points out that the dilution of an hot smoke plume is a three-dimensional 
phenomenon, because the plume, rather than rising as a continuous cone, breaks 
up into a discrete series of puffs which tend to recombine and merge into each 
other as the plume travels downwind, so that the number of puffs per unit length 
of plume decreases with downwind distance. The problem becomes three-
dimensional because the along wind spread must be considered as well. One of 
the main interest in the Moore's model is in the recognition that observations of 
stack plumes sometimes reveal some three-dimensional features (Ooms, 1972) 
either due to its dynamic (formation of two counter-rotating vortices as it leaves 
the stack which may cause the plume bifurcation, split of the plume in lumps) or 
to terrain characteristics in case of low emissions. 
 
Moore model is a generalized one that can be applied in a large variety of 
meteorological situations both during the transitional and final stage of rise 
without switching to various different expressions. 
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The basic difference between the two-dimensional and the three-dimensional 
approach is that in the former the plume rise is proportional to 31

bF , that is to 
31

hQ , see Equations (9) and (27), whereas in the latter it results proportional to 
Qh

1 4 , namely 
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where:  is the wind speed at the height 1 ; u1 5. sz5. xx* =  for short distances and 

 for large distances.  These two asymptotic values are connected by a 
smooth curve possessing the correct asymptotic and near field limiting forms: 
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and xT  is given by the following expression 
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A, D0 and D2 are dimensional constant, whereas D1 is dimensionless. Their values 
were estimated by Moore to be: A = 2.4 14541 smMW −−  for  while, for 

, A = 2.4 for very stable conditions (i.e. for 

m120>sz

m120<sz 32
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5.1
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u
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otherwise ; D0 = 1920 m, D1 = 19.2, and D2 = 120 ms. )007.016.0(4.2 szA +=
H * and ∆ϑ *

szH =*  i

 are parameters related, respectively, to the following two 
assumptions: 1) the atmospheric turbulence effects on the first steps of the plume 
rise evolution are dependent on the height for low sources ( ), but 
independent of the height for high sources ( ); this assumption is 
parameterized setting: f 

m120<sz
m120>sz

m120<sz , H* = 120 m m120>sz if ; 2) the 
atmosphere is assumed to be stably stratified, even in convective conditions; since 

100ϑ∆  is the variation in potential temperature per each 100 m of height increase, 
this assumption is parameterized setting: ∆ϑ* .= 0 08 K K08.0100 < if ∆ϑ , 

100* ϑϑ ∆=∆  if K08.0100 >∆ϑ . 
 
Moore claimed that his model is applicable when the difference in temperature 
between effluent and air ranges between 80 and 150 K, the effluent emission 
velocity vs0 does not considerably overtake the value of 30  and in the 
following conditions: ; 30

m s−1

x > 400 m m230m << sz ; 10 150MW MW< <Qh . 
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An explicit expression of the final height is obtained by inserting 2xx T* =  in 
Equation (55). 
 
2.7.2 The Netterville Model 
 
Netterville (1990) gave a detailed description of the entrainment process, which 
he called the “two-way model”. This is based on an understanding of several 
quantitative aspects of turbulent mixing within free shear layers and on the 
availability of more detailed ambient turbulence data from remote sensors, like 
SODARS and RASS. 
 
The two-way entrainment model predicts that the turbulent atmosphere must 
entrain plume material just as the plume must entrain the atmosphere. Figure 5 
(from Netterville, 1990) illustrates what is meant with two-way entrainment. It 
shows a turbulent plume of radius R that rises at relative speed W through an 
atmosphere containing turbulent eddies of length scale ra and relative root-mean-
square velocity . The plume cross-section is assumed to have a ‘spongy’ 
internal structure caused by atmospheric turbulence eddies, in transit through the 
plume, that form transient holes in the surrounding matrix of turbulent plume 
material. Similarly, also the ambient air eddies become spongy due to penetration 
by the plume’s internal turbulent eddies. 

av′

 
The entrainment process is split into three processes: direct entrainment (a 
process by which plume eddies, due the self-generated turbulence, capture 
ambient air masses), indirect entrainment (ambient air eddies in the plume that are 
in turn penetrated by eddies of the internal plume) and extrainment (transfer of 
plume mass from the plume itself to ambient air due to the turbulent eddies that 
enter the plume and carry off plume mass). 
 

  



6   Plume Rise  129 

 
 

Figure 5.  Schematic of plume/atmospheric interaction (from Netterville, 
1990). [Reprinted with permission from Elsevier Science] 

 
Netterville plume rise model is based on this description of entrainment process, 
and on the solution of the mass, momentum and energy conservation equations. 
The same simplifying assumptions on the plume shape and atmospheric 
conditions as in the Briggs models are made, thus obtaining the following 
scheme. 
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where bft=τ  is the dimensionless plume travel time given by the product of the 
plume travel time, t, and the atmospheric turbulence buffet frequency, fb. This last 
is defined as  
 

( )Eub uf τβσ2=     (59) 
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in which Eτ  is the Eulerian integral time scale of atmospheric turbulence and uσ  
is the standard deviation of longitudinal horizontal wind. 
 
In neutral atmosphere (  = 0) 2N
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In unstable atmosphere (  < 0, 2N 2NN +≡ ) 
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As t → ∞, all three solutions asymptotically approach the same functional form 
for final rise 
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In the above equations, Fe, Me, and Re are initial values of plume buoyancy, 
momentum and radius at the end of bending-over phase. Djurfors (1983) has 
shown that they are given by 
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For stable conditions (s > 0) the final rise is always finite. For neutral conditions 
(s = 0) the final rise is finite only if the atmosphere is turbulent (fb > 0). For 
unstable conditions (s < 0) the final rise is finite or infinite depending on the sign 
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of ( )sfb +2 , i.e. on whether thermal instability or atmospheric turbulence 
dominates plume motion. 
 
The Netterville plume rise model is consistent with the ‘decay constant’ approach 
of Djurfors (1977), which recognized that the mathematical form of leveling-off 
behavior was one in which the vertical distance between the plume centerline and 
its final height would decrease exponentially with time. 
 
The validation of this model is based on one data set of LIDAR measurements. 
 
 
3 Advanced Plume Rise Models 
 
3.1 Introduction 
 
The semi-empirical formulations presented in the previous section have shown, 
on several occasions, a great degree of uncertainty. This is partly due to the 
simplifications introduced in such formulations. Advanced methods, based on the 
numerical integration of a set of differential equations expressing the conservation 
equations and on revised entrainment assumptions, have been proposed. They 
account explicitly sufficient transport mechanisms to be of general use, 
particularly in the cases that are too complicated to be modeled by simple 
analytical models. They provide, at least in principle, a better physical 
representation of the two basic phenomena related to plume rise: the grow of the 
plume centerline and the entrainment of ambient air into the plume and its 
consequent horizontal and vertical spreading. They also allow dealing with 
complex atmospheric conditions. However, they require more computational 
resources and more detailed input data. 
 
Among the advanced models we may distinguish: integral models (they use 
spatially integrated forms of the fluid motion equations), differential models (they 
integrate on Eulerian grids Reynolds-averaged flow conservation equations) and 
large eddy simulation (LES) models. In all these models, the system of equations 
must be closed by a proper number of assumptions and closure hypothesis. 
Essentially they are empirical, but are based on physical reasoning and/or 
observations. 
 
The first two categories, that are not so computationally costly (particularly for 
nowadays computers) are not only of scientific interest, but may also be useful 
tools in air pollution modeling, since they are able to deal with any kind of stack 
plume (jet, dense or buoyant plume) and complex atmospheric structures. 
 
We would like to stress the importance of initialization in numerically solving the 
plume rise equations. Stack geometries and plume exit temperatures and 
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velocities may vary over wide ranges. Consequently, large errors in the plume rise 
estimations can be made if the initial conditions are not correctly formulated. 
 
Many advanced models have been developed. It is hopeless to review them all, 
therefore only some of them are briefly presented below. We would also mention 
that a number of the most recent advanced plume rise models are based on 
Lagrangian particle techniques. These last models for plume rise are discussed in 
Section 4. 
 
3.2 Integral Models 
 
The models developed by Schatzmann (1979), Ooms and Mahieu (1981), 
Glendening et al. (1984), Chiang and Sill (1985), Gangoiti et al. (1997) and 
Janicke and Janicke (2001) are considered here. They give an overview of these 
kind of models developed during the last 20 years. There are some characteristics 
common to all these models. Since the trajectory of a plume (jet, dense or 
buoyant) in windy conditions is not a straight line, they generally use the natural 
coordinate (or curvilinear) system that moves and rotates as it follows the plume 
centerline trajectory, rather than the Cartesian coordinate system. They do not use 
the common Boussinesq approximation thus allowing the treatment of plumes 
with greatly different density from that of ambient air. The plume is assumed to 
exhibit local similarity, i.e., the shapes of the radial profiles of excess velocity, 
temperature and concentration do not change downstream. The profiles of plume 
velocity, temperature, and density are assumed to be of Gaussian (Schatzmann, 
1979; Ooms and Mahieu, 1981; Chiang and Sill, 1985), “top hat” (Glendening et 
al., 1984) or exponential (Gangoiti et al., 1997) shape for mathematical 
simplicity. Models do not use different parameterizations for each phase 
(buoyancy dominate, intermediate and turbulence dominated) of the plume 
trajectory. Additional assumptions are steady state conditions for both plume and 
environment, zero environmental vertical velocity and absence of stack 
downwash effects (see Section 5.1), which is appropriate for plumes with large 
buoyancy, and exit velocity. In most models it is assumed that the mean excess 
and turbulent quantities plume are axisymmetric and, consequently, that the three-
dimensionality of the plume motion can be ignored. Although it is recognized that 
two counter rotating vortices are formed at the stack mouth exit and that the 
plume may break into distinct puffs (that may also merge downwind), these 
effects are neglected since they are assumed to be incorporated in some way in 
the entrainment formulations. All the models were tested against laboratory and 
field data. 
 
Basically, the main difference among the various models lies in the modeling of 
entrainment, i.e. the rate of mixing of ambient air into the plume. Other 
characteristics that make different the models are the inclusion in some of them of 
pollutant dispersion besides the path and spread of the plume or the capability of 
some models to treat arbitrary atmospheric structures, whereas the others should 
divide the atmosphere in a certain number of layers with different constant 
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atmospheric properties. Only a few models accounts for the plume rise 
modifications due to the condensation of plume water vapor. 
The plume rise model of Schatzmann (1979) assumes that the wind velocity is 
constant in value and direction and that the atmosphere is stratified with a 
constant density gradient. It includes seven equations for the following seven 
unknowns: centerline excess velocity, temperature and concentration, centerline 
density defect, jet radius, angle of inclination and local rate of entrainment. A 
rather complex entrainment function is used which is based on the local 
densimetric Froude number, the plume radius, the macroscale of the energy-
containing eddies, angle of the plume trajectory, free-stream velocity, centerline 
excess velocity and five empirical constant. The tests of the model performances 
against many observations including jets, buoyant and dense plumes, gave 
reasonable agreement. This model, however, fails to account for the inertia of 
“effective mass” outside the plume, seems to contain an unrealistic drag term, and 
shows problems in the mass conservation equation (Briggs, personal 
communication to Zannetti, from Zannetti, 1990). 
 
Ooms and Mahieu (1981) proposed a model able to calculate both the path of the 
plume in a windy atmosphere and the ground level concentration. Such model is a 
development of the method for the calculation of the plume path, therefore of the 
plume rise as well, presented in Ooms (1972) and Ooms et al. (1974). The model 
contains eight equations: two equations relate the Cartesian coordinate to the 
curvilinear coordinates; six equations describe the entrainment, conservation of 
mass (pollutant), momentum in the x-direction and in the z-direction and energy; 
the last equation expresses the assumed atmospheric linear stratification. The 
description of the entrainment and the drag force, is based on the theoretical work 
of Abraham (1970) and Loh-Nien Fan (1967). The rate of entrainment of air into 
the plume due to atmospheric turbulence depends on the eddy energy dissipation 
ε. For neutral conditions a relation for ε due to Briggs (1969) is used and for the 
other stability conditions data from Kaimal et al. (1976) are considered. Cross-
sections of the plume are assumed to be ellipses. Moreover, this model takes into 
account the first part of the plume, known as the zone of flow establishment, and 
also the turbulence and stratification of the atmosphere so that the influence of the 
different stability on the plume path can, in principle, be studied. The simulated 
ground level concentrations were compared with those obtained by a classical 
Gaussian plume model (using Briggs formulae – see Section 2 – for plume rise 
and Singer-Smith, 1966, sigma curves). The agreement was good in neutral and 
unstable conditions, while large differences were found in stable conditions. 
 
The Ooms and Mahieu model is used in the ADMS model (e.g., Carruthers et al., 
1999). 
 
The plume rise model proposed by Glendening et al. (1984) is able to treat 
arbitrary complex atmospheric structures also when there are large vertical 
variations in atmospheric stability or wind velocity (conditions particularly 
common for near shoreline power plants). The model consists of a set of eight 
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ordinary differential equations (conservation of mass, energy, horizontal x and y 
momentum, vertical momentum, plus three relationships between curvilinear and 
Cartesian coordinates) and three equations (gas equation and the definitions of 
virtual temperature and virtual potential temperature). Entrainment is 
parameterized according to Hewett et al. (1971). Profiles of temperature and wind 
are needed to run the model. The accuracy of the model prediction, verified 
against field observations, were found satisfactory and superior to those from a 
standard plume rise formula - Equation (44). 
 
The Glendening et al. plume rise model, as modified by Hurley and Manins 
(1995), is used in the models LADM (e.g., Physick, 1996) and TAPM (e.g., 
Hurley et al., 2001; see also Section 4.3.2). 
 
The model developed by Chiang and Sill (1985) is applicable to all stability 
conditions but only to simple atmospheric structures (that can be expressed by 
analytical relationships). The governing equations express the conservation of 
mass, momentum in the direction oriented along the plume path and to the normal 
to it, thermal energy and tracer concentration. Two relationships between natural 
and Cartesian coordinates are also used and the system is closed with an 
entrainment model. Basically, the authors' interest was to develop new 
entrainment models. Thus they proposed different entrainment models for 
different turbulent mixing mechanisms (such as shear, buoyancy, or ambient 
turbulence). Then, these authors proposed that, when the turbulent mixing is due 
to the contemporary action of different mechanisms, the total entrainment rate is 
the linear combination of the various rates derived individually from growth rate 
models, i.e. a superposition approach. 
 
The agreement between predicted plume trajectories, velocities and dilution rates 
and the observed ones was satisfactory. 
 
Gangoiti et al. (1997) presented a three-dimensional plume rise model for tall 
stacks capable of dealing with complex atmospheric profiles. Ambient turbulence 
is assumed to be homogeneous and isotropic, the plume is considered to exit from 
the stack as a mixture of dry combustion gas, water vapor and liquid water. Dry 
air and ambient water vapor, but not liquid water, are then entrained during the 
plume motion. Thus the model allows for condensation and/or re-evaporation 
within the plume. Condensation in a moist atmosphere increases buoyancy 
through release of latent heat while evaporation of droplets absorbs latent heat 
from the plume, which consequently loses buoyancy. The classical 
parameterization for entrainment of air into plume due to the self-generated 
turbulence has been completed with entrainment-extrainment processes in 
turbulent winds. This is based on the model of turbulent mass transfer between 
plume and environment proposed by Netterville (1990, see Section 2.7). A set of 
equations describing in great details the balance of mass, momentum and energy 
in the plume constitutes the model. This can be used also to predict plume 
penetration into elevated inversion layers but can provide only qualitative 
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estimates of the fraction of plume material that penetrates into them (see Section 
5.2). 
 
These authors compared the performance of their numerical model with a set of 
simpler models widely used in regulatory applications for plume rise calculation. 
Plume condensation has been found to be a major cause of underestimation in 
those simpler models, while wind shear causes systematic overestimation in 
stably stratified atmospheres. The assumed power law similarity profiles for the 
plume temperature and velocity gave better results in light winds (< 1.5 ms ) 
than the "top hat" profiles. 

1−

 
Also the PLURIS model (Janicke and Janicke, 2001) can be applied to situations 
with arbitrary three-dimensional wind fields and to both dry and moist plumes. 
Arbitrary directions of the source exit can be considered. Unlike models based on 
a similarity profile description, it is not necessary to make assumptions about the 
structure or symmetry of the plume cross-section or about the zone of flow 
establishment near the source exit. The similarity profiles enter into the model 
only via the definition of the liquid water content and affect mainly the prediction 
of the visible plume boundary. In the absence of condensation, the model is 
independent of any similarity profile assumptions. The model consists of 8 
differential equations for mass, x, y, z-momentum, enthalpy, velocity fluctuations, 
total water content, and concentration. In addition, there are three differential 
equations for the three Cartesian coordinates of the plume axis. In the special case 
of a bent-over plume the model can be solved analytically. The model was 
validated by a direct comparison with various plume rise measurements obtained 
by means of water tank, wind tunnel, and field experiments. The model is 
presently implemented and used in combination with the Lagrangian dispersion 
model LASAT (Janicke, 1983). 
 
3.3 Differential Models 
 
Golay (1982) proposed a differential entrainment model. It is able to simulate 
bent-over plumes in complex vertical atmospheric structures by numerically 
integrating the conservation equations of mass, momentum, heat, water vapor, 
liquid water, and the two equations for the turbulent kinetic energy and eddy 
viscosity in a form presented by Stuhmiller (1974). It uses a mixed Eulerian-
Lagrangian reference system. A two-dimensional Eulerian computational mesh 
translates downwind at a plume mass averaged wind speed.  
 
Data from field study of airborne SO2 plume and for ground level SO2 
concentration were used to test the model performances. The model simulations 
resulted in better agreement with observations than those obtained by standard 
analytical formulations. 
 
The major limitation of Golay’s approach is the detailed meteorological 
information that is required; i.e., the vertical profiles of wind speed, virtual 
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potential temperature, relative humidity, turbulent kinetic energy, and turbulent 
viscosity. 
 
3.4 LES Models 
 
Probably the most promising technique for the simulation of buoyant plumes in 
unstable conditions, at least from a theoretical viewpoint, is the Large Eddy 
Simulation (LES). These model simulations allow studying in great details the 
contribution to the plume motion caused by convective turbulence and that caused 
by plume buoyancy. Nieuwstadt and de Valk (1987) applied such a model to a 
line source, in which buoyancy was added by increasing the temperature of the 
source with respect to the ambient temperature. Then they solved the equation for 
the concentration conservation simultaneously with the other LES equations. 
Further work in this direction was performed by van Haren and Nieuwstadt 
(1989), who obtained reasonable agreement between the output of their LES, 
which however considered only a modest plume buoyancy, and the field 
experiments of Carras and Williams (1984). It was found that the fraction of the 
plume motion caused by plume buoyancy does not seem to obey the “two-thirds” 
law. Plume buoyancy strongly affects the contribution of ambient turbulence to 
the mean plume height. Nieuwstadt (1992a) showed that the two contributions 
(internal buoyancy and ambient turbulence) cannot simply be calculated 
independently but that they interact. Thus ambient convection influences the 
plume rise (large eddies modify the entrainment) and vice versa (the interaction 
ambient turbulence – plume motion depends on plume rise which transports the 
plume to different PBL heights). 
 
Zhang and Ghoniem (1993, 1994 a,b) developed a computational model based on 
the Lagrangian interpretation of the dynamics of buoyancy-driven flows that uses 
the vortex element and transport element methods to solve the governing 
equations. The solution they have constructed causes the model to be considered 
as a LES model, since the governing equations describe the effects on the plume 
motions of the large scales and the small scales are modeled phenomenologically 
(Zhang and Ghoniem, 1993). They faced problems of increasing complexity in 
three subsequent papers: firstly they considered a neutral atmosphere with small 
scale turbulence in a horizontal uniform wind (Zhang and Ghoniem, 1993), then 
considered a linearly stratified atmosphere (Zhang and Ghoniem, 1994 a) and, 
finally, a linearly stratified atmosphere capped by an inversion layer (Zhang and 
Ghoniem, 1994 b). The following results may be important not only from a 
theoretical point of view but also for their practical implications. In neutral 
atmosphere it was found that the plume cross-section is kidney-shaped and that 
the initial shape of the cross-section (that can be circular or elliptical) has some 
effects on the plume trajectory. In the case of a circular plume the "two-third" law 
is closely followed. The entrainment is dominated by large scale engulfment 
which is inhomogeneous and non-isotropic. In the second case, linearly stratified 
atmosphere, it was found that the entrainment constant β  (estimated equal to 
0.49) mainly affects the equilibrium height, whereas the added mass constant kv 
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(see Section 2.2.2 – estimated equal to 0.7) influences the downwind distance 
where this equilibrium height is reached. In the third case, the interaction of the 
plume with an inversion layer (i.e.: partial or total or null plume penetration - see 
also Section 5.2) has been studied. In particular it was found that when the plume 
bumps against an inversion layer, internal gravity waves are generated along the 
layer, radiating the energy of the plume and reducing its penetration capacity. 
 
 
4 Particle Models for Plume Rise 
 
4.1 Introduction 
 
In Eulerian and Gaussian models, the final plume height h∆  is generally 
computed by means of simple analytical expressions (like those presented in 
Section 2 of this chapter) and inserted in the model as an input parameter. On the 
contrary the inclusion of plume rise in Lagrangian Stochastic Models (LSM, see 
also Chapter 11) can be done dynamically, i.e. each particle, at each time step, 
can be acted upon by local wind speed and direction, ambient stability and 
turbulence (both the self-generated and ambient ones). Therefore it is possible to 
obtain a degree of resolution and accuracy not obtainable with other simulation 
techniques. Furthermore, the interaction of a plume with a capping inversion layer 
can be simulated in a rather "natural" way. However the correct incorporation of 
plume rise in LSM is still an open problem, since it is needed to simulate the 
entrainment phenomenon, that is the exchange processes between the plume 
particles and the turbulent environment must be described. Since entrainment 
acts, primarily, at the edge of a plume, the position, velocity and buoyancy of the 
other particles should be also taken into account. 
 
A completely satisfying approach, based on fundamental particle behavior, is not 
yet available. Nevertheless many formulations have been proposed in the 
literature to practically solve the problem, with a different degree of 
approximation, allowing the plume rise calculation in LSM. They try to achieve a 
good compromise among computational requirements, physical consistency and 
reliability of the numerical results. Indeed, most of them proved to give reliable 
results when compared to laboratory and/or field data. In the following these 
approaches will be presented. They include: empirical methods; semi-empirical 
methods, in which the plume rise is computed by numerically integrating, at each 
time step, the conservation equations - see Equations (2 - 5) - and the plume 
spread is calculated by the Langevin equation for the vertical velocity; theoretical 
models, in which an attempt is made of directly simulating the rise of buoyant 
plumes in a Lagrangian framework. 
 
4.2 Empirical Methods 
 
The first attempt to include plume rise into LSMs, taking into account the vertical 
variation of wind and stability, was done by Zannetti and Al-Madani (1984). Let 
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us recall (see Chapter 11) that in LSMs, the vertical particle positions Xz is 
generally computed, at each time step ∆t, as follows 
 

( ) ( ) ( ) ( )[ ] ttwtUtXttX zzz ∆′++=∆+    (66) 
 
where  represents the mean vertical wind component (generally equal to 
zero in flat terrain) and 

( )tU z

( )tw′  refers to the ambient turbulent term (random 
forcing) which is computed from a stochastic equation for the velocity 
fluctuation. The idea, is to add an additional vertical velocity accounting for the 
buoyant rise, , to Equation (66), thus obtaining bw
 

( ) ( ) ( ) ( )[ ] twtwtUtXttX bzzz ∆+′++=∆+    (67) 
 
They expressed this extra-velocity by time differentiating an empirical analytical 
plume rise equation for the transitional phase (TVA formula – Strom, 1976). The 
same plume rise contribution is given to all the particles provided they are at the 
same height and have the same age. The plume spreads in the vertical as a 
consequence of the ambient turbulence only. This last appears in the stochastic 
equation for the vertical velocity. This method can correctly simulate the 
ensemble averaged plume mean height (provided the used analytical formula is 
correct), but the vertical spread, particularly in convective conditions, is likely to 
be underestimated. The authors presented some numerical examples showing how 
the method works and its ability to give qualitatively reasonable results. However 
they did not indicate how to compute the time at which the plume rise stops 
contributing to the vertical particle motion. They also suggested a possible 
alternative method that could better simulate the vertical spread, but without 
developing it. It consisted in tagging each particle with a random buoyancy of 
"suitable intensity". 
 
Cogan (1985) was the first to try to model the entrainment process, even if on an 
empirical basis. The plume is divided into layers of constant thickness and, within 
each layer, it is separated into an inner region (containing the particles included 
within the center of mass one standard deviation) and an outer region. In the 
inner region the temperature of each particle is computed as a function of its 
distance from the center of mass, whereas in the outer region the particle 
temperature is reduced by a preset amount. This last depends on the chosen value 
of the entrainment constant. 

±

 
Shimanuki and Nomura (1991) tried to numerically simulate the instantaneous 
images of chimney plumes under convective conditions. Their technique is based 
on single Lagrangian particle trajectories, whose velocity fluctuations are 
spatially correlated. The spatial auto-correlation function is prescribed in a 
completely empiric way and all the trajectories within a single cell assume the 
same value of the spatial auto-correlation function. The buoyancy effect is 
roughly accounted for by assigning a given initial vertical velocity to each 
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particle. The air stability does not affect directly the particle motion but is taken 
into consideration in the computation of turbulence scales. 
 
The Zannetti and Al-Madani (1984) suggestion was applied by Anfossi et al. 
(1993) for buoyant plumes and by Anfossi (2000) for jet plumes.  To each i-th 
particle a normally distributed buoyancy flux  is assigned at the stack exit, 

fixing the mean value equal to the mean buoyancy flux 

i
bF

bF and the standard 

deviation equal to 3bF  (this value, 1/3, was empirically fixed requiring that the 
plume radius near the source was approximately equal to ( )zh6.0 ∆ ). In the case 
of a jet plume, , i

mF mF  and 3Fm  are used. Instead of computing  by means of 
an empirical analytical plume rise equation for the transitional phase only, they 
assumed that the plume centerline grows according to a plume rise formula 
describing both the transitional and final phases and different stability conditions. 
Thus, a simple algebraic expression giving a smooth curve and possessing the 
correct asymptotic and near field limiting forms was used. This interpolation 
curve was built following the Moore's suggestion - see Equation (56). For 
buoyant plumes, the interpolation curve has the following expression (Anfossi, 
1985) 

bw

 
( ) ( ) ( ) 31231

a
2

b 3.4stUtF6.2th −
+=∆    (68) 

 
and was obtained considering the “two-thirds” law  - Equation (27) - for the 
transitional phase both in neutral/unstable and stable conditions (Arya, 1999) and 
Equations (44) for the final rise in stable conditions. For neutral/unstable 
conditions (s = 0) the plume final height is fixed according to Equation (38). The 
low wind speed conditions are dealt with inserting a minimum wind speed (0.3 
ms1).  is computed as follows bw
 

( ) ( )[ ]
t

t,s,Uhtt,s,Uh
t
zw aa

b ∆
∆∆∆

∆
∆ −+

==    (69) 

 
The model simulations were validated against DIAL measurements of a Thermal 
Power Plant plume in complex terrain (Anfossi et al., 1993). Predicted plume 
centerline height and horizontal and vertical plume width satisfactorily compared 
to the observed ones. 
 
This method is used in the 3-D Lagrangian Stochastic Model SPRAY (Tinarelli et 
al., 2000; Finardi et al., 2001), which is also used (in some complex terrain cases) 
for regulatory purposes in Italy. 
 
Equation (68) was also used by Graziani et al. (1997) for their LSM simulation of 
the dispersion of the volcanic emission from Vulcano Island.  
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Figure 6.  See the text (adapted from Anfossi et al., 1993). [Reprinted with 
permission from Elsevier Science]. 

 
Figure 6 shows a simulation result of this approach in non-homogeneous vertical 
meteorological conditions, in which simpler analytical approaches cannot be 
used. It refers to a typical fog situation in the Po Valley (Northern Italy): the fog 
layer extends from ground level to 250 m, an inversion layer with a large 
temperature increase (8 °C) lies between 250 and 400 m and the superior layer is 
nearly isothermal. Nearly calm conditions prevail ( ). Each point in 
Figure 6 represents a model particle position. One can see that the rise of the 
plume is stopped by the inversion layer, that the pollutant reaches the ground 
level very close to the stack (fumigation) and that a partial inversion penetration 
occurs. 

1
0 ms1u −≅

 
The case of jet plume is similarly treated. The starting points are the Briggs' 
formulae for jet plumes, Equations (24), (48), (51), and (52). Equation (24) works 
in the transitional phase, where the other equations are valid for the final stage of 
rise both in neutral and stable windy or calm conditions. In this case, Equation 
(68) becomes: 
 

• for neutral conditions 
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were: d1 = 2.3 and 
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• for stable and windy conditions ( ) u > −1 1m s

 
61

22
6

3

1313231
1 1)(

−

−












+








=∆ ts

d
dtUFdxh am    (71) 

 
were: d3 = 1.5; 

• for stable and calm conditions ) (u < −1 1m s
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were: d4 = 4. 
 
The vertical velocity, , is computed as in Equation (69) and the plume rise 
calculation is stopped when the difference between 

mw
)(xh∆  and the corresponding 

asymptotic final value is less than a chosen small value. 
 
Also Souto et al. (2001) estimated the rise of buoyant plumes according to 
Equation (67). The extra velocity due to the buoyancy effects, wb, was estimated 
as follows 
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in unstable conditions and 
 

( ) 3
1

3
s

a
2

a
b r

UN
U/Nxcos(1F86.0

t
04.2w 








+

−
=

∆
   (74) 

 
in stable conditions. The numerical coefficients of these equations and the x 
exponent in Equation (73) were obtained by best fit of field observations. 
Equation (74) was proposed by Zhang and Ghoniem (1994a). This plume rise 
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calculation was inserted in two operational models, a LSM and an adaptive puff 
model. 
 
4.3 Semi-Empirical Methods 
 
Some interesting methods for incorporating buoyancy effects in LSM, were 
proposed by Luhar and Britter (1992), Hurley and Physick (1993), Hurley (1999, 
2000) - these two methods are inserted and operative in the CSIRO models 
LADM and TAPM - and Weil (1994). Instead of assuming valid an analytical 
formula (or an interpolation formula), these methods compute the mean plume 
rise by directly solving the energy, mass and momentum conservation equations. 
This procedure is time consuming. However, also the Langevin equation, 
computing the velocity fluctuations, is already numerically solved. Therefore the 
increase in calculating time, with present days computer technology, is likely not 
to be a real problem. Different schemes are used to compute the plume spread and 
the interaction of ambient turbulence with the plume. 
 
4.3.1 The Luhar and Britter (1992) Method 
 
The LSM of Luhar and Britter (1992) accounts for the effects of source buoyancy 
on plume dispersion in the CBL by including the mean plume rise and the 
additional dispersion due to plume’s self-generated turbulence. To incorporate the 
mean plume rise they added a new acceleration term in the Langevin equation for 
the vertical velocity component of their previously developed LSM (Luhar and 
Britter, 1992) for the dispersion of passive plumes in the CBL (consequently, the 
model is one-dimensional). The new acceleration term was based on the 
following expression 
 

( )
dx

dWUtg a
a

a −=
−
ρ

ρρ )(     (75) 

 
where ρ(t) is the plume density at travel time t (= x/Ua). In the model, it was 
assumed that in the CBL the effects of ambient stability and wind shear on plume 
dispersion and rise could be neglected since the potential temperature and 
horizontal wind do not change appreciably with the height. This assumption 
allowed using the conservation equations in a simplified form, valid in the neutral 
boundary layer. The solution obtained from these equations for the mean vertical 
velocity W for three phases of plume development was used in Equation (75). The 
three phases correspond to the three different entrainment relationships of 
Slawson and Csanady (1971). During the initial phase, the intermediate phase, 
and the final phase, plume’s self-generated turbulence, inertial sub-range 
turbulence, and energy containing eddies, respectively, govern plume rise. The 
expression for W in the initial phase of the rise, for example, is 
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which corresponds to the well-known ‘two-thirds’ behavior of plume rise. Luhar 
and Britter (1992) emphasized the importance of including the ambient turbulence 
effects in calculating W through the use of the entrainment relationships of the 
last two phases. Effects of plume’s initial momentum on plume rise were also 
included. 
 
To account for the additional dispersion due to the self-generated turbulence, the 
model assumed that the mass, and hence the computer particles and their velocity 
and acceleration, have a Gaussian distribution about the plume centerline. Thus 
the model uses two random numbers drawn from a Gaussian distribution: one for 
the random component of the acceleration due to the ambient turbulence and the 
other for the random acceleration due to buoyancy. 
 
The model simulations of crosswind-integrated concentrations from a few 
laboratory and field studies reported in the literature appeared to be satisfactory. 
 
4.3.2 The CSIRO Methods 
 
Instead of accounting for the effects of buoyancy on plume dispersion simply by 
introducing an extra term into the random walk equation for displacement, Hurley 
and Physick (1993) compute the vertical velocity of each particle as the sum of 
the plume velocity due to the buoyancy and initial momentum effect and a 
stochastic perturbation due to the combined effects of the self generated and 
ambient turbulence. However, the problem of simulating the entrainment process 
is not solved since the classical entrainment assumption - the plume radius grows 
linearly with height - is imposed in both the deterministic and stochastic parts. 
 
The deterministic vertical velocity is obtained by numerically integrating, at each 
time step, the basic conservation equations (see Section 2) in which the standard 
assumptions (Boussinesq approximation, top-hat profile and bent over plume) are 
made. The stochastic wind components are calculated by the Langevin equations 
for the velocity (Thomson, 1987; see also Chapter 11), namely 
 

dWCdtadu a0
'
i ε+=     (77) 

 
where ,  are the Lagrangian velocity fluctuations, a  depends on the 
Eulerian probability density function (PDF) of the turbulent velocity and is 
determined from the Fokker-Planck equation, C  is a numerical constant,  is 
a random term, normally distributed (mean 0 and variance ). For the 
simulation of plume rise in the CBL, the Gaussian form of the PDF is assumed for 
the two horizontal components, while a skewed distribution, obtained by a linear 
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combination of three Gaussian functions, is used for the vertical component. 
These three functions represent the contribution to the turbulence due to the 
updrafts, downdrafts and plume self-generation, respectively. In the LSM for 
passive tracers based on the Langevin equation, the coefficients of the Gaussian 
functions are obtained by equating the zeroth through third moments of the 
Eulerian ambient PDF (0 ). In this case, the first three moments of the 
resulting PDF are equated to 0 , where  is the velocity 
variance due to the plume rise effects. The three plume velocity variances are 
defined, on the basis of the above mentioned classical entrainment assumption, as 
follows 

3
wa

2
wa S,,σ

, 3
wa

2
wp

2
wa S,σσ + 2

wpσ

( )2
p

2
vp wβσ ==2

upσ

( )2
p 2wβ=2

wpσ

pε

 
 

        (78) 
 

 
where wp is the particle vertical velocity. The form of the PDF of the vertical 
velocity fluctuations for simulations in stable conditions is assumed to be 
Gaussian with the variance and the eddy dissipation rates being calculated as the 
sum of ambient plus plume rise induced components. 
 
Plume rise computation is terminated either when ap εε ≤  (convective conditions) 
or when the buoyancy of a particle becomes less than or equal to zero (stable 
conditions). The plume penetration of the inversion layer capping the mixing 
height is simulated letting the plume particles to overcome the mixing height if 
they do not have yet satisfied the termination condition. When the plume rise 
calculation is stopped, particles are reflected at the mixing height. 
 
The authors advise of some numerical problems in the first couple of time steps (1 
s) after release due, very likely, to the height dependence of ( )( )xhw5.1 3

p ∆=  
on the rise height, which tends to diverge for 0h ∝∆ . The problem was partially 
solved by imposing, near the stack mouth, ( )tp ∆ε C0

2
wσ≤ . 

 
Comparisons with CBL water tank dispersion experiments (Willis and Deardorff, 
1987), characterized by different values of the dimensionless buoyancy flux  - 
see Equation (42) - were shown. Predicted final plume height 

*F
h∆  and plume 

entrapment above the CBL were found to be in reasonable agreement with the 
observed ones, even if a slight overestimation of h∆  in three out of four 
experiments, causing peak entrainment values higher than observed, was found. 
This could be corrected by changing the value of the entrainment parameter β 
from 0.6 to 0.7. The overall distribution of concentration compared quite well. 
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An alternative approach to including plume-rise induced turbulence in a 
Lagrangian approach, which avoids some of the very-near-source numerical 
problems above mentioned is contained in the model TAPM (Hurley, 1999, 
2000). The equations of conservation of plume volume, buoyancy and momentum 
flux, G, Fb and Fm, are written in this model - see, for comparison, Equations (2 - 
5) 
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a RuT
TG = , GWFm = , Fb is defined as in Equation (6), 

22
ap WUu +=

6.0=
 is the plume velocity, E is the turbulent kinetic energy, a , 1.0=

β  and 1.0=γ  are the vertical plume, bent-over plume and ambient 
turbulence entrainment constants, respectively. The initial conditions for Fb and 
Fm are the same as in Equations (16) and (18), 
 

 0sms vFG =  and 2
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Equations (79) are based on the model proposed by Glendening et al. (1984), as 
simplified by Hurley and Manins (1995). Tests on these equations, performed by 
the authors, showed that they performed as good as the full original ones and 
collapsed to the Briggs form for a bent-over Boussinesq plume, and to the Briggs 
vertical plume model equations for calm conditions. 
 
4.3.3 The Weil (1994) Method 
 
This method was designed to deal with CBL dispersion of weakly to moderately 
buoyant plumes ( ). Also in this method, an extra acceleration term is 
added in the Langevin equation in order to account for plume rise. This is 
obtained by numerically solving the conservation Equations (2 - 5) in which the 
entrainment assumption appearing in Equation (2) is modified to account for the 
ambient and self-generated turbulence. Consequently, Equation (2) becomes 

1.0F* ≤
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where the identity (  was used,  is the entrainment velocity 
and

)scsc ddUdtd = ev

1γ  an empirical parameter. The first term on the r.h.s of Equation (80) 
describes the entrainment due to the plume-generated turbulence, whereas the 
second term accounts for the ambient turbulence. For a jet plume  where ae vv =
 

( ) 3
1

aa R2v ε=      (81) 
 
is the relative velocity of two particles separated by a distance R. Notice that in 
this approach the radius R is defined as “the region enclosing all of the buoyant 
fluid”. For a buoyant plume, having assumed U asc U= ,  is given by ev
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where 2γ  is another empirical parameter. Defining the dimensionless distance X* 
and momentum flux  as *mF
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Weil (1994) obtained that ambient turbulence becomes effective at a non-
dimensional distance 5

2

*
5

3
6.1 FX va α=  for a buoyant plume and 

7
2

*
7

9
6.0 mva FX α=  for a jet, having defined pev wv=α . Fitting his model to the 

Willis and Deardorff (1983) observations, this author determined the following 
values for the unknown parameters: 4.01 =γ , 12 =γ  and 49.0=α  or  for 
buoyant and jet plumes, respectively. Notice that 

9.1
49.0=α  implies that ambient 

turbulence starts to dominate when the entrainment velocity is about half the 
plume velocity ( ). pe w5.0v ≈
 
When the plume reaches the temperature inversion height h (capping the CBL) 
and penetration occurs, the vertical plume velocity becomes zero (actually it 
oscillates about zero) but some plume segments may be brought into the CBL by 
negative ambient velocities. The buoyant acceleration, due to the fact that the  
potential temperature is greater than below h, provides a positive velocity tending 
to keep the plume aloft and the ambient velocity (calculated by the Langevin 
equation) varies randomly and therefore may be either positive or negative. 
 
Weil (1994) also found that, despite the differences in the models, the mean fields 
computed with this model are very similar to those produced by the Luhar and 
Britter (1992) model. 
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4.4 Theoretical Models 
 
4.4.1 The Van Dop (1992) Particle Model for Buoyant Plume Rise 
 
A buoyant plume is defined as the volume, which contains a mixture of ambient 
and originally released, buoyant fluid. The envelope of the plume is the 
(imaginary) and in a way, arbitrary boundary of this volume. A fraction of the 
original buoyant fluid separates from the plume and becomes so remote that it is 
no longer considered to be part of it. On the other hand the volume of the plume 
expands due to turbulent intrusions of ambient air resulting in an increasing 
ambient fraction and consequently, a gradual loss of plume temperature and 
vertical acceleration. 
 
A Lagrangian ‘plume particle’ can now be defined as a small entity, which 
possesses the mean characteristics (velocity, temperature) of the plume. 
Stochastic fluctuations, directly related to the turbulent intensity within the 
plume, determine the rate of growth of the plume width and are superimposed on 
the mean characteristics. Ultimately, due to the entrainment and extrainment 
processes, the plume (particle) dynamics must converge to the environmental 
dynamics. Hence, the equation of motion in the vertical dimension for a buoyant 
plume particle can be formulated as 
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(see Van Dop, 1992). Here, W is the plume particle vertical velocity and B is the 
plume particle buoyancy, defined by 
 

B =
g
Ta

ϑ p − ϑa( )    (85) 

 
The assumption that the buoyancy of each individual fluid particle is defined by 
the difference between the particle's temperature and the ambient temperature is a 
crude one, and in fact the proper buoyancy should be related to the full 
surrounding temperature field, which includes the temperatures of the other 
buoyant fluid particles. However, this inclusion would lead to a set of (coupled) 
Langevin equations for each individual fluid particle, and the attractiveness of the 
Lagrangian approach would be lost. The Lagrangian time scale of the plume is 
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assumed to be equal for velocity and buoyancy and is denoted by Tp. The 
dissipation of velocity and buoyancy is denoted by εw and εB, respectively. dωw(t) 
and dωB(t) are random increments in the Lagrangian equations for velocity and 
buoyancy respectively. The stratification of the environment is given by N - see 
Equation (15). Xz is the plume particle’s vertical position. 
 
The usual assumptions for the random terms are 
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The last assumption implies that stochastic velocity and buoyancy changes are 
uncorrelated on the (small) Kolmogorov scales, which may be questionable, but is 
perhaps not very important for the present consideration. It should be noted that 
for the mean plume rise, zX , the Equations (84) reduce to a deterministic set - 
due to the properties listed in Equations (86), and thus zX  does not depend on 
the dissipation terms. 
 
In order to simulate a power law behavior for plume rise, which, in the early stage 
in a calm neutral environment, is confirmed by experimental evidence (see for 
example Turner, 1973), the Lagrangian time scale must be proportional to t. 
Assuming Tp = Ap (t + to), it is retrieved the similarity solution (Csanady, 1973), 
provided that 
 

Ap =3/4     (87) 
and 

t0 = 2rs / 3βB0( )1/ 2

    (88) 
The relation with the 2/3 law is imposed by the choice of Ap = 3/4. The initial 
plume radius and buoyancy are denoted by rs and B0, respectively, and β is the 
plume entrainment constant (~ 0.6). Through the definitions of the plume particle 
buoyancy, B, and the heat output of the source, Qh, to can be related to the 
buoyancy flux parameter Fb - see Equation (9) – by 
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With this choice of parameters the Langevin formulation can be forced to 
correspond asymptotically ( t → ∞ ) to the classical plume rise formulae. 
 
Plume rise in a turbulent environment was addressed in detail by Netterville 
(1990) (see Section 2.7.2), who introduced an additional turbulent exchange 
mechanism, ‘extrainment’, generated by the ambient turbulence. A logical 
consequence of his theory for the Lagrangian framework is that if the plume 
turbulence dominates, the turbulent time scale of the plume, Tp should be applied, 
whereas if the environmental turbulence dominates, the ambient time scale, Te , 
should be used. This view is reflected in an modified  expression for the time 
scale 
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The Lagrangian formulation using Equation (90) was compared with Netterville's 
expression for the mean plume rise and though the Lagrangian formulation results 
in somewhat lower values, it has the same leveling off behavior in the final stage. 
 
The Lagrangian equations provide also for an independent evaluation of the 
plume variance or plume width. This requires, however, explicit expressions for 
the dissipation, εw and εB in Equations (84). Van Dop (1992) suggests to use the 
actual particle velocity and buoyancy to parameterize the dissipation and assumes 
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where c1 and c2 are constants O(1). Numerical solutions for the plume width, σz, 

defined as ( ) 2122
zz XX − , were obtained, but do not agree with the similarity 

prediction, σ z ∝ t2 / 3 . 
 
Alternatively, the dissipation may be parameterized as 
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Choosing αw > 5/3 and αB > 11/3, and for example equal to 2 and 4, respectively, 
it can be proven numerically and (in the neutral case, N = 0) also analytically that 
the plume width converges to the similarity prediction 
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and the ratio zz Xσ  is given by 
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Csanady (1973) suggests (pp. 176-195) that this ratio is approximately 1/3. From 
this a value for the coefficient cB of 
 

cB =
B0

2
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(95) 

 
is inferred. Finally, evaluating the plume width in a turbulent environment 
requires also that the ambient turbulent dissipation rate is considered. As in the 
case for the Lagrangian time scale - see Equation (90) - Van Dop (1992) suggests 
the parameterization 
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where εp is given by W2 / Tp. 
 
The algorithm can without much difficulty be extended to an non-homogeneous 
and non-stationary ambient turbulence by including height dependent  
formulations for ambient time scales and dissipation rates and using the 
appropriate version of the Langevin equations in these conditions. Arbitrary 
stratification, including a CBL with a capping inversion can be accounted for by 
introducing a height dependent N. 
Though the method contains a number of heuristic elements, the Lagrangian 
formulation is transparent and computationally straightforward. It is consistent 
with the classical formulations for plume rise in a calm environment (see Turner, 
1973; Briggs, 1969; or Csanady, 1973), but also accommodates more recent 
Eulerian formulations in a turbulent environment (Netterville, 1990; Nieuwstadt, 
1992a,b). This makes it attractive for various practical applications. Yamada 
(2000) included this algorithm in a modeling system (HOTMAC-RAPTAD) and 
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examined its performance. He concluded that the overall performance was ‘as 
least as good as those of the ‘better’ models reported by Hanna et al. (1993)’. 
 
A drawback of the Lagrangian method is that in order to remove the statistical 
noise, a large number of flow realizations should be evaluated. 
 
4.4.2 Buoyant Plume Rise Described by a Lagrangian Turbulence Model 
 
The research interest in buoyant plume rise is driven by the theoretical aspects of 
the simulation of the turbulent mixing of fluids with different temperatures. 
Similarity theory provides parameterizations for the mean plume height and width 
(Csanady, 1973, Briggs, 1975) if the influence of the ambient turbulence can be 
neglected, i.e., if the turbulence is generated only by the plume. This applies to 
the initial stage of plume rise, and for emissions into neutrally stratified ambient 
flows with a negligible turbulence. However, for practical plume rise calculations, 
models are required that: 

• are computationally not too expensive 
• can be applied to both stages of the buoyant plume rise and different 

ambient conditions 
• permit the assessment of fluctuations, i.e., provide also plume statistics 

 
The attempt to derive directly such models leads within the Eulerian framework 
to Reynolds-averaged Navier-Stokes (RANS) equations, and within the 
Lagrangian framework to Lagrangian particle models. RANS equation methods 
(Weil, 1988, Netterville, 1990, Gangoiti et al., 1997) apply parameterizations for 
terms that are related to the turbulent mixing of the plume and the ambient flow. 
 
By means of Lagrangian methods both the mean plume behavior and the plume 
statistics can be described in accordance with constraints of the similarity theory 
and observations. This was demonstrated by van Dop (1992) (see Section 4.4.1) 
in a first systematic analysis of the description of buoyant plume rise by 
Lagrangian methods. Alternative methods are described by Anfossi et al. (1993) 
(see Section 4.2), where also a review can be found on earlier work (see Zannetti 
and Al-Madani, 1984, Cogan, 1985) to describe buoyant plume rise by means of 
Lagrangian methods. Lagrangian particle models simulate the plume dynamics, 
but they require knowledge about the flow field that has to be provided by 
Eulerian models, or has to be approximated. 
 
Lagrangian turbulence models (LTM) give a full description of both the motion 
and properties of plume and of the ambient flow. In particular, these Lagrangian 
equations are constructed consistent with the Eulerian RANS equations. In 
analogy to direct numerical simulation (DNS) or large eddy simulation (LES) 
(Nieuwstadt and de Valk, 1987, Nieuwstadt, 1992a,b, Zhang and Ghoniem, 1993, 
1994a,b; see Section 3.4), LTM resolves mixing for high-Reynolds number flows 
avoiding the high computational costs of DNS or LES. We shall derive a buoyant 
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plume rise model from an LTM, which can be used for regulatory applications 
and satisfies the constraints (i), (ii) and (iii) considered above. 
 
The Lagrangian description of fluid motion (i.e., of plume- and ambient-air 
particles) requires Lagrangian equations that are consistent with the Navier-
Stokes equations. Two methods are used to date which provide for this 
consistency: first, the derivation of stochastic Lagrangian equations that are 
consistent with RANS equations up to second-order (van Dop et al., 1985, 
Sawford, 1986, Pope, 1994, Heinz, 1997, 1998), and second, the derivation of 
these equations consistent with an Eulerian velocity PDF (Thomson, 1987). The 
first approach, which is applied here, requires closure assumptions for the 
pressure redistribution and dissipation terms in the RANS equations of second-
order. Closure assumptions for the pressure redistribution and dissipation terms in 
the RANS equations are known and relatively well-investigated for buoyant flows 
(see, e.g., Craft et al., 1996). 
 
Details about the derivation of stochastic Lagrangian equations for buoyant 
turbulence can be found elsewhere (Heinz, 1997, 1998; Heinz and Van Dop, 
1999). Here we present a summary. 
 
The change of particle position dXi (i = 1, 2, 3), velocity dUi and potential 
temperature dϑp is described by a set of linear stochastic differential equations: 
 

dXi = Uidt
dUi = Aidt + bijdω j

dϑ p = Aθ dt + bθ dωθ
    

(97) 

 
where 
 

Ai = ai + Gij U j − uj( )+ Gi ϑ p −θ( ) 

Aθ = aθ + Gj
θ U j − uj( )+ Gθ ϑ p −θ( ) 

 
 

(98)
 

 
The (Eulerian) ensemble average is denoted by overbars and summation over 
repeated subscripts is assumed. Deterministic changes of the particle velocity are 
described through the first terms on the right-hand side of Equation (97) with the 
unknown coefficients ai ,a

θ ,Gi ,Gij ,G
θ  and Gj

θ . The second terms describe the 
stochastic force caused by the small-scale turbulence and contains the additional 
unknown coefficients bij and bθ. The properties of dωj and dωθ, random 
increments for velocity and potential temperature (~ buoyancy) - see Equation 
(84) - are defined in Section (4.4.1). 
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Equations (97) can be transformed into a Fokker-Planck equation for the one-
point joint velocity-temperature PDF of the flow P(u,ϑ, x, t) (Gardiner, 1983; 
Risken, 1984) 
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The viscous dissipation and potential temperature dissipation are denoted by εq 
and εθ, respectively. C  and C  are constants whose value will be determined 
later. 

0 1

 
From Equation (99) arbitrary moments of velocity and potential temperature can 
be obtained. In this way we are able to derive a set of equations which are similar 
to the RANS equations. We can summarize the latter in a suitable approximation 
up to second order as 
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Here, T is a boundary-layer reference temperature, and ϑa is the mean ambient 
potential temperature,ν is the molecular viscosity and κ the conductivity. In order 
to be able to solve Equations (101) we have to make a number of closure 
assumptions 
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where τ is a dissipation time scale, which obeys 
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where Cε1 and Cε2 are constants equal to 1.56 and 1.9, respectively, and q is twice 
the turbulent kinetic energy. 
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In the closure assumptions appear a number of closure constants ki (i=1-4), which 
will be determined later. 
 
It can be shown (cf. Heinz, 1997; Heinz and van Dop, 1999) that first and second 
moment equations derived from Equation (99) can be written similar to Equations 
(101), provided that the Lagrangian constants appearing in Equations (97) obey 
the following relationships 
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An additional consistency requirement is that k2 = 0. Hence we may reformulate 
the Lagrangian Equations (97) now as 
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where N is the Brunt- Väisälä frequency and B = (g / T )(ϑ p − θ ) . The constants 
Cε1 and Cε2 are related by Cε1 = 1 + Cε 2 −1( )/1.6  (Heinz,1998). Note that for the 
evaluation of the Eulerian moments appearing in Equation (108) it is still required 
to solve Equation (101) numerically. 
 
In order to determine the remaining constants in Equation (97) we have compared 
the Lagrangian predictions of plume rise with Eulerian approaches (Weil, 1988; 
Netterville, 1990) in a still environment. This yields 
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and 
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Similarity theory also provides algebraic scaling laws for the variances. Applying 
these we obtain 
 

42 8
31 kC ⋅+=ε

    
(111) 

 
Equations (109), (110), and (111) relate four unknown constants, 
Cε 2,k1,k3 and k4 .  A value for Cε2 was found from a comparison of our model 
results with the LES data of Zhang and Ghoniem (1994a) in stably stratified flow, 
yielding Cε2 = 1.286. All constants in Equations (108) are now determined. 
 
The full model was evaluated against experimental data collected by Erbrink 
(1994). The effects of ambient wind shear and stability were considered by 
solving the parameterized equations for q2,θ 2 ,u1u3 and u3θ , see Equations (101). 
Details are given in Heinz and Van Dop (1999). 
 
Figure 7(a) shows a scatter plot of measured plume heights versus the 
corresponding modeled plume heights in neutral to slightly stable conditions. The 
figure shows that the agreement between the observed plume heights and our 
predictions is very good. This means in particular that the model predictions do 
not only agree with the two-thirds power law, but also estimate correctly the 
leveling-off of the plume due to ambient stability. 
 
In Figure 7(b) the plume radii are compared. The agreement is still fair, though 
the scatter has increased. It gives some support for the observation that the 2/3 
similarity prediction also holds for the spreading of the plume. 
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Figure 7. (a) Scatter plot of measured versus modeled normalized mean 
particle heights, 2

00/ τBX z
. B0 is the initial buoyancy and τ0 is defined by 

( ) 21
0

21
0 Brsπτ = . (b) the same comparison but now for the plume 

widths defined as 2
00

22 / τBXX zz − . Ambient stability conditions during 
the measurements varied from slightly stable to neutral. 

 
 
5 Special Cases 
 
All the plume rise estimates discussed in the previous four sections apply to 
effluents coming out from elevated and isolated sources, without accounting for 
possible effects of nearby buildings or stacks or of the presence of inversion 
layers. However, in practice, these situations (and others, like the case of ground 
level fires, of flares and of the presence of scrubber) need to be investigated since 
they may affect the plume rise and, consequently, modify the plume trajectory 
and the ground level concentration distribution. Generally these special topics are 
treated with “ad hoc” formulations. In this review we will briefly consider the 
following cases: downwash parameterization, penetration of elevated inversions, 
plume rise from multiple sources, plume rise from flare stacks, plume rise from 
fires, plume rise from stacks with scrubber. This review is not exhaustive and will 
give some examples of possible modeling solutions that are, in general, inserted 
in regulatory models. 
 
5.1 Downwash Parameterization 
 
In the plume rise computation, a special care must paid to the possible occurrence 
of downwash effects. These can be classified as: 

• stack tip downwash, a possible drag of the effluent in the wake downwind 
the stack due to the presence of the stack itself 

• building downwash, effluent emitted from a stack near a building and  
brought downward by the flow of air over and around the building 
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• Stack tip and building downwash cause a decrease in the plume rise 
because of two concomitant phenomena 

• the drag of the effluent in the stack and/or building wake; since this wake 
extends below the stack outlet, this drag causes the plume to decrease its 
height 

• the increase of the entrainment with ambient air (causing a consequent 
decrease of buoyancy) due to the wake turbulence 

 
In both cases, the reduced plume rise has the effects of increasing the ground 
level concentration. In particular, these last may be very high immediately 
downwind the stack or building if the plume is completely trapped in their wake. 
 
Both stack tip downwash (e.g., Briggs, 1973; Bjorklund and Bowers, 1982; 
Overcamp, 2001) and building downwash (e.g., Briggs, 1973; Huber and Snyder, 
1982; Schulman and Hanna, 1986) are to be considered when the ratio uvs  is 
small. In the first case, the buoyancy amount has to be accounted for as well. 
 
The procedures for the correction of the final plume rise, presented in the 
remainder of this section, do not provide any information about the plume 
trajectory near the stack outlet. They turn out useful in case one is interested in 
the prediction of pollutant concentrations in some areas that are at least a few 
hundreds of meters away from their source. 
 
5.1.1 Stack Tip Downwash 
 
The generally accepted practical rule (Briggs, 1969 and 1973) is that stack 
downwash will occur if the ratio of effluent speed, vs0, to wind speed, u0, is less 
than about 1.5. However Briggs (1969) also suggested that this rule may be 
relaxed for highly buoyant plume (emitted by modern fossil-fuel power plants and 
larger industrial stacks). However, stack tip downwash is still an important 
problem for neutrally buoyant effluents or small industrial emissions. 
Furthermore, Overcamp (2001) stressed that it is a very important problem in 
simulating plumes in wind tunnels and towing tanks. 
 
Bjorklund and Bowers (1982) proposed the following expression for the final 
plume rise corrected for the stack tip downwash, h′∆  
 

∆ ∆′ =h f h     (112) 
 
where f is a dimensionless parameter calculated with the following procedure: 
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first, compute the Froude number of the effluent, Fr, defined as 
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• if Fr

2 3<  then f = 1 (no correction); 
 

• if : 32 ≥rF
if  then f = 1 (no correction); 05.1 uvs >
if  then 05.1 uvu s ≤< ( ) 0003 ss vuvf −= ; 
if  then 0uvs ≤ f = 0 (no plume rise). 

 
Snyder and Lawson (1991) modeled the downwash of neutrally buoyant effluent 
on the immediate lee side of a circular stack in a wind tunnel. They addressed the 
study to neutrally buoyant plumes solely because, as discussed in the paper, it 
appears not to be possible to perform the same study for  buoyant plumes in a 
small-scale laboratory. They simulated both sub-critical (Reynolds numbers 
below the critical Reynolds number, ≅ 2 × 105) and supercritical (Reynolds 
numbers above the critical Reynolds number) turbulent flow. Sub-critical 
Reynolds numbers are typically attained by small-diameter stacks in relatively 
light winds; supercritical ones are attained by large-diameter stacks in strong 
winds (supercritical regimes are typical of the majority of full-scale stacks). The 
downwash characteristics differ markedly in the two regimes. For example, 
Snyder and Lawson (1991) found that downwash is much more serious in the sub-
critical case than in the supercritical one. Furthermore, in the sub-critical regime, 
downwash begins when the ratio of effluent speed, vs0, to wind speed, u0, is less 
than about 1.5; while in the supercritical regimes, downwash begins when such 
ratio is less than about 1.1. Empirical expressions are provided for vertical plume 
widths in the sub- and supercritical regimes, for lateral plume widths in the 
supercritical flow regime (not measured in sub-critical regime), and for plume 
centroids in the supercritical regime – the centroids in the sub-critical regime are 
too complex to be fitted by simple expressions. 
 
Overcamp (2001) studied the range of conditions that may lead to downwash in 
designing simulation of buoyant plumes in wind tunnels and towing tanks. He 
made a comparison between data on the occurrence of downwash from ten sub-
critical model studies and the theory proposed by Tatom (1986) - reference from 
Overcamp (2001). The Tatom’s theory predicts that downwash does not occur if 
the following implicit relationship is satisfied 
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and CD is the drag coefficient. All the ten independent experiments that Overcamp 
considered were characterized by 2<′R . He found that there was good 
agreement of Tatom’s theory with the occurrence of downwash. 
 
5.1.2 Building Downwash 
 
We describe in some detail the method for taking into account the building 
downwash proposed by Schulman-Scire (Schulman and Scire, 1980; Scire and 
Schulman, 1980; Schulman and Hanna, 1986), because this method is 
implemented in both the ISC3 (U.S. EPA, 1995b) and AERMOD (U.S. EPA, 1998) 
models and is inserted in the CALPUFF code (Scire et al, 1999; 
http://www.src.com/calpuff/calpuff1.htm) as well. Then, more recently developed 
building downwash parameterizations will be also presented. 
 
The Schulman-Scire method incorporates the effects of building downwash both 
on reducing plume rise and on enhancing dispersion parameters. 

• σy0 ≤ σz0 
neutral-unstable conditions 

 
the plume rise, ∆hd(x), of a downwashed plume is  the real solution of the cubic 
equation 
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where β1 is the neutral entrainment parameter (∼ 0.6), βj is the jet entrainment 
coefficient ( 0031 sj vu+=β ), 00 2 zR σ= is the dilution radius, and σy0, σz0 are 
the horizontal and vertical dispersion coefficients, respectively, at a downwind 
distance of 3Hb (Hb = building height);  
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- final stable plume rise 
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where β2 is the stable entrainment parameter (∼ 0.36). Transitional plume rise 
during stable conditions is computed with Equation (116) until the final plume 
height predicted by Equation (117) is obtained. 
 

• σy0 > σz0 
 
It is necessary to account for the elongated shape of the plume caused by 
horizontal mixing of the plume in the building wake; the plume can be 
represented as a finite line source: 
 
- neutral-unstable conditions 
 
the plume rise, ∆hd(x), for a line source of length Le  is 
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- final stable plume rise 
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The effective line length is ( )002 zyeL σσπ −=  if σy0 > σz0; otherwise Le = 0 and 
Equations (118) and (119) reduce to Equations (116) and (117). 
 
The enhanced dispersion coefficients, σy0 and σz0, vary with stack height, 
momentum rise, and building dimensions. As σy0 and σz0 approach zero (e.g., 
building downwash effects become negligible), Equations (116) to (119) 
approach the unmodified Briggs (1975) equations. The effect of R0 and Le is 
always to lower the plume height, thereby tending to increase the predicted 
ground-level concentration. 
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Hanna et al. (1998) developed a model to describe the lift-off of ground-based 
buoyant plumes using wind tunnel observations. Special emphasis was given to 
the development of simple empirical lift-off equations for buoyant plumes, which 
are trapped in building wakes. The model was developed using wind tunnel 
observations of plumes for which buoyancy was conserved, but the authors also 
proposed to use it for plumes whose buoyancy flux varies with distance 
(phenomenon that can occur due to the presence of aerosols, chemical reactions, 
and evaporation and condensation processes). Hanna et al. (1998) suggested that 
the effects of plume lift-off can be accounted for by multiplying the calculated 
ground-level concentration in the absence of lift-off by an exponential term 
depending on buoyancy flux. For buoyant plumes trapped in building wakes, the 
empirical formula that is proposed combines the exponential term with four 
additional terms related to the spread of plumes in building wakes. Such lift-off 
formula is incorporated in the HGSYSTEM/UF6 hazardous gas dispersion code 
(Hanna and Chang, 1997). 
 
The ADMS code (e.g., see Carruthers et al., 1999) includes a module for building 
effects based on the model of Hunt and Robins (1982). This module computes the 
dispersion of pollution from sources near isolated large buildings or closely spaced 
blocks. The model is able to deal with the influence on turbulent and mean velocity 
field of an extensive downstream wake. A simplified flow field is defined, based on a 
well mixed cavity (or recirculating flow region) and a downstream momentum wake. 
It takes into account the source position and allows for complete or partial 
entrainment into the recirculating flow region. Within the recirculating flow region 
concentrations are uniformly calculated. For partially entrained emissions, the 
entrained and non-entrained components form a two-plume structure downwind. 
Alternative spread parameters describe dispersion inside and outside the downstream 
wake. 
 
Flowe and Kumar (2000) showed that a three-dimensional turbulent kinetic 
energy/dissipation (k-ε) numerical model, FLUENT, can be used as a tool for 
modeling air flow past a building and stack geometry, and the recirculation cavities 
associated with wide buildings, and to develop parameterizations useful to air quality 
modeling needs. These modeling capabilities were proved through the comparison 
with experimental wind tunnel data generated for several ratios of building width to 
building heights. Then, the flow field was examined to determine the length of the 
recirculation cavity as a function of the ratio of building width to building height 
both in front of and in the rear of the building. The height and length of the front 
recirculation cavity were parameterized as a function of the ratio of building width to 
building height. This is a novelty as far as regulatory models are concerned. 
 
Schulman et al. (2000) proposed the Gaussian dispersion model PRIME for plume 
rise and building downwash. The plume trajectory within the modified fields 
downwind of the building is estimated using the Zhang and Ghoniem (1993 – see 
Section 3.4) numerical plume rise model. Such model is based on a numerical 
solution of the mass, energy and momentum conservation laws. It allows arbitrary 
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ambient temperature stratification, uni-directional wind shear, and initial plume size. 
A cavity module calculates the fraction of plume mass captured by and recirculated 
within the near wake. The captured mass is re-emitted to the far wake as a volume 
source and added to the uncaptured plume contribution to obtain the far wake 
concentrations. The PRIME model is implemented within the ISC3 code (Schulman 
et al., 1997), but it can be implemented in other refined or screening air quality 
models 
 
5.2 Penetration of Elevated Inversions 
 
Elevated inversions can be divided in thin and thick inversions according to their 
depth: when the plume cross section is greater than the inversion layer thickness, 
we have the case of the thin inversion, whereas when the entire plume cross 
section is contained in the inversion layer, we have the case of a thick inversion. 
 
Plume buoyancy is often large enough to allow plumes to fully or partially 
penetrate an elevated temperature inversion layer (see Figure 8). Plume material 
will penetrate an inversion if the temperature excess of a part of the plume at a 
given height exceeds the temperature change through the layer at the same height. 
This typically happens during daytime, where the CBL is generally capped by 
stable air. In the case of a thin inversion, the potential temperature jump ∆ϑi is the 
important parameter, whereas in the case of a deep inversion layer the potential 
temperature gradient, zi ∂∂ϑ  is the characteristic quantity. Consequently, the fate 
of the plume depends upon these parameters and on the inversion base height 
(Zannetti, 1990; Weil, 1988). A plume, which is able to completely penetrate the 
inversion, makes little or no ground level concentration contribution. On the 
contrary a plume trapped below the inversion can easily be diffused towards the 
ground bringing about consistent ground-level concentrations (fumigation). 
 
Most of present applied dispersion models (Weil, 1988) only distinguish between 
complete penetration and no penetration. However many studies (see, for 
instance: Manins, 1979 or Thompson et al., 2000) have shown that the situation is 
not so simple and more detailed methods are needed. In particular, Manins (1979) 
and Zannetti (1990) concluded that a complete plume penetration is almost 
impossible since, upon reaching the inversion, there will be a part of the plume 
having insufficient buoyancy for further rise. This was also qualitatively shown 
by LSM simulations (Zannetti et Al Madani, 1983 and 1984). Thus, it is 
important to know the fraction of the plume that is trapped. 
 
The simple method provided by Turner (1985) for discriminating between these 
two cases in presented in Section 5.2.1. Then, we review other penetration models 
for bent-over plume: first, for a thin inversion, the Briggs (1975), Manins (1979), 
and Weil (1988) models, see Section 5.2.2; then, for a thick one, the Briggs 
(1984), and Berkowicz et al. (1986) models, see Section 5.2.3. 
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Figure 8. Schematic of the interaction of a buoyant plume and an elevated 
inversion layer (from Manins, 1979). [Reprinted with permission from 
Pergamon Press.] 

 
5.2.1 The Turner Procedure 
 
Turner (1985) worked out a pragmatic method using a modification to Briggs 
(1975, 1984) formulae for computing the final buoyant plume rise by layers and 
the possible (partial or total) penetration of the plume above the atmospheric 
thermal discontinuities (such as, typically, the mixing height). 
 
Turner method considers that the plume, during its rise, may meet atmospheric 
layers of different wind speed and stability. To use this method, one must know or 
estimate the values of temperature and wind speed close to the stack, on at least 
two different levels. One at a height between ground level and the stack outlet 
height, the other at an elevation higher than that reached by the upper edge of the 
plume at the end of its rise (given by h he ∆+ 5.0 ). Obviously, to be able to make 
optimum use of Turner method, one ought to know the values of temperature and 
wind speed at numerous intermediate levels, as well as at the previous two levels. 
Furthermore it is also assumed that the mixing height and the rate of change of 
potential temperature with height above the mixing height are available. 
 
This procedure for computing the final plume rise consists of the following steps. 
 
1) Calculation of the stack tip downwash factor (f) through Bjorklund and 
Bowers’ model (see Section 5.1.1); 

• if f = 0  
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Turner method provides a null final plume rise and an effective emission (see 
item 4 below) equal to the emission at the stack. 

• if f > 0 we can go onto the following steps; 
 
2) Calculation of the final plume rise keeping into account the plume transit 
through some atmospheric layers having different characteristics of temperature, 
wind speed and stability. 
 
We start computing the final plume rise, by using a modification to Briggs (1975, 
1984) formulae and the meteorological parameters of the atmospheric layer that 
includes the stack outlet. If either the obtained final plume rise (in neutral or 
unstable conditions) or the upper edge of the plume (in stable conditions) does not 
overtake the top of the layer containing the stack outlet, the calculated final plume 
rise is the results of the first part of Turner method. If neither of them does, we 
have to compute the residual buoyancy, and use it to repeat the computation 
procedure of the final plume rise of the next layer; the new plume rise has the 
same fate as the previous one. The process goes on from layer to layer till the 
result will be obtained. 
 
3) The final plume rise computed through the procedure illustrated at point 2) is 
adjusted by the stack tip downwash factor (see Section 5.1.1). 
 
4) To calculate the penetration of the plume above atmospheric thermal 
discontinuities, this procedure assumes that a fraction ′f  ( 10 ≤′≤ f ) of the total 
emission, Q, remains trapped below the base of the thermal discontinuity, placed 
at the height ht, and affects the concentration measured by receptors below this 
height. The product ′f Q  is known as the “effective emission”. 
 
As far as ′f  is concerned two options are possible: 
 
a) ; this means that this option disregards the penetration of the plume 
above the thermal discontinuity, but takes only into account the modification 
made to the plume rise; 

′ =f 1

 
b)  and the modified plume rise are calculated with the method discussed 
below. 

1≠′f

 
Option b) can be chosen only if ht is greater than the distance of receptors from 
ground level. With this method, three possibilities are considered, depending on 
the values taken by the parameters 
 

hht ep ∆+= 5.0      (120) 
 
and 
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hhb ep ∆−= 5.0      (121) 
 
assumed by Turner to represent the upper and the lower edge of the plume. These 
three possibilities are: 

• if , no penetration of the plume above the thermal discontinuity is 
assumed, i. e. 

tp ht ≤

′ =f 1; 
• if , the entire plume is assumed to penetrate above the thermal 

discontinuity, i. e. 
tp hb ≥

′ =f 0; no concentration is measured by receptors; 
• in the intermediate case, i. e. b ptp th << , Turner proposes 

 

10 <
∆

−
=′<

h
bh

f pt     (122) 

 
and 
 

hfh ∆
′+

=′′∆
2

1     (123) 

 
as the actual plume rise, instead of ∆h. 
 
This plume rise/partial penetration technique provides a computationally simple 
solution for engineering calculations. However, the problem of correctly 
modeling partial penetration is still wide open. 
 
One can observe that, since this method requires a detailed knowledge of the 
various atmospheric layers crossed by the plume (e.g., coming from vertical 
profile observations), it would be similarly simpler to solve directly the 
conservation equations as mentioned in Section 3. However, this method was 
recalled here since it is incorporated in some dispersion models, like, for instance, 
in the TUPOS model (Turner et al., 1986), in the PTSRCE preprocessor program 
of UAM-V (U.S. EPA12), and in the SAFE_AIR package (Canepa et al., 20003) as 
a user option. 
 
5.2.2 Thin Inversion 
 
For a vertical plume, Briggs (1975) predicts that a thin inversion layer can be 
completely penetrated if the mean temperature excess of the plume at height h′ (h′ 
= ht – zs) exceeds the temperature jump ∆ϑi. Defining ( ) ii gb ϑϑ ∆= , complete 
penetration occurs if 

                                                 
1http://www.epa.gov/scram001,  
2http://uamv.saintl.com/ 
3 http://155.207.20.121/mds/bin/show_long?SAFE_AIR 
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( ) 2523019.0 hbF ib ′>      (124) 
 
for a buoyant plume, and 

( )325.0 hbF im ′>      (125) 
 
for a jet. This last equation is based upon experimental results by Vadot (1965). 
 
For bent over buoyant plumes the finite depth of the plume cannot be neglected 
and, consequently, partial penetration is more likely than complete penetration. 
The Briggs (1975) model considers the plume buoyancy depletion during the 
inversion traverse. Defining an equilibrium height with respect to the top of the 
stack, z′eq, where its buoyancy flux is equal to zero and assuming the plume cross-
section to be rectangular with a depth equal to the rise ∆h, and a width equal to 
0.5 ∆h, z′eq is found to be (Briggs, 1975; Weil, 1988): 
 

( ) 21
b

eq P91
3
2

h
z

π+=
′

′
     (126) 

 
where the dimensionless buoyancy flux Pb is given by 
 

2
ia

b
b hbU

F
P

′
=       (127) 

 
The percentage of plume trapped by the inversion and thus diffused downwards is 
 

5.0
z
hP1f
eq

b −
′
′

=−=′     (128) 

 
From which the following simple criteria derive: 

• hzeq ′<′
3
2 , no penetration (f′ = 1); 

 

• hzh eq ′<′<′ 2
3
2 , partial penetration - f′ is given by Equation (128); 

 
• , complete penetration (f′ = 0). hzeq ′>′ 2

 
For bent over jets, substantial inversion penetration may be assumed (Briggs, 
1975) when 
 

( ) 2521
0

22.2 hbuF im ′> β     (129) 
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The Manins (1979) model is based on the assumption that the density or 
temperature is normally distributed in a bent over buoyant plume when its 
centerline reaches the inversion. As in the previous Briggs (1975) model, the 
inversion is idealized as a jump of zero thickness. Defining ∆ϑm to be the 
maximum excess temperature, Manins also assumed that penetration starts when 
∆ϑm = ∆ϑi, and found that this happens if 
 

Pb = 0.08     (130) 
 
He suggested that partial penetration would occur, for the part of the plume with 
∆ϑ > ∆ϑi, when Pb > 0.08. Accounting for the effects of the momentum overshoot 
of the plume and the re-entrainment back into the plume of material trapped 
within the inversion, the above condition leads to the following expression for the 
fraction of the plume trapped in the inversion layer 
 

( 08.0P
P
08.0f b
b

−−=′ )     (131) 

 
Weil (1988) compared laboratory observations (see Figure 9) of inversion 
penetration by Manins (1979) and Richards (1963) and noted that Manins model, 
Equation (131), fits reasonably well his data but overestimates most of Richards 
data while Briggs model, Equations (126) and (128), overestimates part of the 
observed . Weil argues that these differences between models and observations 
can possibly be due to some different configurations in the experimental 
conditions between the two experiments and, in particular, of the ratio 

f ′

hhi ′∆ , 
where ∆hi is the finite thickness of the inversion layer. As a consequence, Weil 
(1988) considers the effect of ∆hi on the plume penetration capacity and of a 
different temperature distribution. He found that the fraction of the plume below 
the inversion top, h′ + ∆hi, is 
 

( )[ ]2121 1cos11 λλλ
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where 
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with 
h
zeq

eq ′

′
=η , and 

h
hi

′
∆

=δ . 

 

  



6   Plume Rise  169 

 
 

Figure 9. Models and laboratory measurements of the fraction of a plume 
trapped by an elevated inversion as a function of the dimensionless 
buoyancy flux P (adapted from Weil, 1988). [Reprinted with permission 
from American Meteorological Society] 

 
5.2.3 Thick Inversion 
 
In this case the reference inversion height h′, to calculate penetration and trapping 
probabilities of occurrence, is the height of the inversion base. Briggs (1975, 
1984) considered the simple case in which s is constant with height. He also 
assumed that plume equilibrium height is given by Equation (44), namely 
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su
Fz b

eq     (134) 

 
in which s is computed from dϑi/dz. To estimate the fraction of the plume trapped 
f’ =1 - Pb, he used Equation (128), obtaining 

• hzeq ′<′
3
2 , no penetration (f′ = 1); 

 

• hzh eq ′<′<′ 2
3
2 , partial penetration - f′ is given by Equation (128); 

 
• , complete penetration (f′ = 0). hzeq ′>′ 2

 
Briggs’ (1984) model gives conservative estimates since the plume initially rises 
in an atmosphere with s = 0, in which it should not experience any buoyancy 
depletion. 
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Berkowicz et al. (1986) considered this aspect. By assuming that the process of 
buoyancy reduction initiates only when the upper boundary of the plume arrives 
at , they proposed the following equation for the ratio h′ hzeq ′′  
 

( )[ ] 3133 326.2 +=
′
′

s
eq P

h
z

   (135) 

where 
 

32hNU
F

P
ia

b
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=     (136) 

 
5.3 Plume Rise from Multiple Sources 
 
When several stacks are located close to each other, the resulting plume rise is 
different from that of a single stack. Plumes coming from the various stacks 
generally merge during the rise stage thus causing enhanced rise due to reduced 
ambient air entrainment and increased buoyancy. Consequently, ground level 
concentration is reduced. This enhanced plume rise was observed both in 
laboratory experiments and in the field (Manins et al., 1992). In general the 
enhancement is greater in the case of flow parallel to the stacks than in the normal 
flow and, in both cases, the plume rise exceeds that of a single plume (Anfossi, 
1985). Overcamp and Ku (1988) also confirmed that enhancement is a function of 
the angle between the direction of the wind and the line of stacks, finding that the 
rise is larger when the angle is small. In the same way, also plumes coming from 
cooling towers (Bornoff and Mokhtarzadeh-Dehghan, 2001) or from multiple 
fires (Trelles et al., 1999b) may merge and experience enhanced rise. 
 
Briggs (1975) provided a semi empirical formulation for determining the plume 
rise in the case of stacks of equal height and buoyancy flux. He defined the 
enhancement factor, En, as the ratio of the plume rise from n stacks to that of one 
stack, whose expression is the following 
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where d is the spacing between the stacks and ∆h1 is the plume rise from a single 
stack. 
 
Anfossi et al. (1978) developed and tested (Anfossi et al. 1979; Anfossi, 1982, 
1985; Sandroni et al., 1981) a virtual stack concept that allows two or more stacks 
of different buoyancy and heights to be merged. Their model for the plume rise 
from multiple sources is expressed by the following equation 
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in which 
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is the merging point height, minH∆ is the maximum single plume rise from lowest 

stack , minH =C 3
1

minmin / FH∆  and ( )dnD 1−= . In the case of stacks of equal 
height and buoyancy flux, Equations (138) and (139) reduce to 
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Anfossi (1985) and Manins et al. (1992) demonstrated that Equations (137) and 
(140) give almost equal results. 
 
5.4 Plume Rise from Flare Stacks 
 
A flare stack is a vent gas stack with a small pilot flame at the stack exit. 
Combustible vent gases flowing from the stack exit are ignited by the pilot flame 
and burned in the open atmosphere just above the stack exit. The hot, combusted 
gas plume then rises and disperses in the atmosphere just as does any hot, buoyant 
plume. Flare stacks are widely used in industrial plants; in particular, flare stacks 
are an essential safety requirement in hydrocarbon processing facilities. 
 
By means of direct observation, Leahey and Davies (1984) showed that the 
entrainment of ambient air into the flare plume is similar to what found in stack 
plumes and that the flare plumes rise according to the "two-third" law. 
 
The SCREEN3 model (U.S. EPA, 1995a) deals with flare. Buoyancy flux for flare 
release is estimated from 
 

f
5

b Q1066.1F −=     (141) 
 
where Qf is the total heat release rate of the flare (cal s-1). This formula  - see 
Equation (9) - was proposed by Briggs (1969). The value of the constant was 
derived fixing Ta = 293 K, ρa = 1205 g m-3, cp = 0.24 cal g-1 K-1, and assuming the 
following relationship between Qf and the sensible heat release rate Qh: Qh = 0.45 
Qf. The sensible heat rate is based on the assumption that 55 % of the total heat 
released is lost due to radiation (Leahey and Davies, 1984). The buoyancy flux 
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for flares is calculated in SCREEN by assuming effective stack parameters of vs0 
= 20 m s-1, Ts0 = 1273K, and solving for an effective stack diameter, ds = 9.88 10-4 

(Qh)0.5. 
 
5.5 Plume Rise from Fires 
 
Environmental consequences of large fires are of interest since the rise and 
transport of combustion products can distribute potentially hazardous materials 
over a wide area (McGrattan et al., 1996). Plume rise simulation from fires is not 
straightforward. For example, the life cycles of a forest fire includes an initial 
developing stage with large increases in heat generation and pollutant emissions 
rates, followed by a stage of decreasing values. Therefore, the source parameters 
of a forest fire are usually not constant. The magnitude of the variation in heat 
generation and emission rates may be two orders of magnitude over the course of 
burn (Scire et al, 1999). 
 
Various models dealing with plume rise from fires are available in the literature. 
For instance Manins (1985) considered plumes from fires from thermonuclear 
explosions (direct bomb fires, incineration of the immediate blast area and 
injection from fires which spread from the blast area). The prediction of fire 
plume-rise was based on the Boussinesq buoyant plume model of Morton et al. 
(1956) since this was shown by Turner (1973) and Briggs (1975) to give good 
results for small to large heat sources when the ambient wind is light (see also 
Section 2.1). 
 
Recently McGrattan et al. (1996) presented a LES model of smoke plumes 
generated by large outdoor pool fires transported by a uniform ambient wind. This 
model was extended by Trelles et al. (1999a) to deal with the problem of large-
scale fire plumes in the presence of winds, which vary, in the vertical direction. A 
further extension performed by Trelles et al. (1999b) investigated multiple fire 
plumes. In fact large scale fire scenarios commonly involve multiple combustion 
sources: the class of problems considered excludes fires large enough to alter the 
prevailing atmosphere, but it allows for fires sufficiently strong to interact with 
each other and to have local atmospheric influence. 
 
Also some regulatory computer codes include the treatment of plume rise from 
fires. For example, the FIREPLUME code (Brown et al., 1999) and the CALPUFF 
code (Scire et al, 1999; http://www.src.com/calpuff/calpuff1.htm) that are briefly 
described below.  
 
FIREPLUME (Brown et al., 1999) is able to simulate atmospheric dispersion and 
air quality impacts from fires. FIREPLUME deals with plume rise by means of 
the MCLDM Lagrangian particle model (Brown et al, 1996). The framework for 
treating source buoyancy closely follows from the “two-thirds” law, which is 
applicable in cases where the buoyant source has low initial momentum. Fires 
clearly fall into this category (Weil, 1982). Although the “two-thirds” law is 
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primarily used for stack emissions, its extension to fire buoyancy is 
straightforward. The plume rise relationships are incorporated into MCLDM to 
provide a mean vertical velocity for the individual particles. The vertical 
dispersion from a variety of buoyant release scenarios can be evaluated, from 
intensely buoyant sources typical in actively burning forest fires to very low 
buoyancy sources, such as, in the residual stages of smoldering biomass. 
 
In CALPUFF (Scire et al, 1999; http://www.src.com/calpuff/calpuff1.htm) the area 
source plume rise model is formulated to calculate the rise of buoyant plumes 
resulting from forest fires, the burning of leaking oil, and other type of buoyant 
area sources. The model is designed to be applicable to the following conditions: 
1) all types of ambient temperature stratifications; 2) all types of wind 
stratifications (wind shear is important because the forest fire plume starts at 
ground where there is a zone of large velocity gradients in the vertical); 3) any 
size of finite emission source; 4) include the effects of plume radiative heat loss; 
and 5) Boussinesq approximation is not assumed. 
 
5.6 Plume Rise from Stacks with Scrubber 
 
Desulfurization techniques have often been adopted for either the combustibles 
(e.g., coal cleaning) or the flue gas (scrubbers). The latter technique seems by far 
the most cost effective for SO2 emission reduction. Most flue gas desulfurization 
devices employ a wet scrubbing technique in which a Ca(OH)2 solution is used 
for partial removal of SO2. 
 
Plumes from stacks with scrubbers are frequently modeled using the same 
techniques as the other plumes. Schatzmann and Policastro (1984) reviewed the 
problem of evaluating ∆  for stacks with scrubbers, concluding that “the 
significant moisture content of the scrubbed plume upon exit leads to important 
thermodynamic effects during plume rise that are unaccounted for in the usual dry 
plume rise theories”. 

h

 
Plume rise models for wet plumes (e.g., cooling tower plumes) have been 
developed by Hanna (1972), Weil (1974), and Wigley and Slawson (1975). Even 
these formulations, however, are inappropriate for scrubbed plumes, according to 
Schatzmann and Policastro (1984), because of the simplifications they adopt. 
Sutherland and Spangler (1980) compared observed plume rise heights for 
scrubbed and unscrubbed plumes and evaluated the performance of several plume 
rise formulations. They found that simple plume rise formulae are questionable 
even for dry plumes, while moisture effects in scrubbed plumes increase the 
plume buoyancy and almost compensate for the loss of plume rise due to the 
temperature decrease induced by the scrubbing system. Plume rise of moist 
plumes was reviewed by Briggs (1984). 
 
Schatzmann and Policastro (1984) recommend integral-type models for scrubbed 
plumes, with the additional requirement of avoiding some common 
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simplifications such as the linearization of the equation of state, first-order 
approximations in the calculation of the local saturation deficit, and the 
Boussinesq approximation. 
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