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Abstract: Receptor models complement source models by independently identifying sources and 
quantifying their contributions using ambient measurements of different observables at different 
times and locations.  Source apportionment is accomplished by solution of the mass balance 
equations that express concentrations of several measured pollutants as a linear sum of products of 
pollutant abundances in source emissions and source contributions.  These equations can be solved 
by several methods, including maximum likelihood weighted least squares, singular value 
decomposition eigenvectors, and positive matrix factorization.  A viable solution does not 
guarantee physical reality, so internal and external validation measures must be evaluated.  
Receptor models are best used in conjunction with source models to create a “weight of evidence” 
for justifying emission reduction measures on different source types.  
 
Key Words: receptor model, source apportionment, chemical mass balance (CMB), ambient 
measurement, source profile, particulate matter (PM), volatile organic compound (VOC). 
 
 
1 Introduction 
 
1.1 Receptor Model Definition 
 
Receptor models (Brook et al., 2003; Watson and Chow, 2002a; Watson et al., 
2002a) include a wide range of multivariate analysis methods that use ambient air 
measurements to infer the source types, source locations, and source contributions 
that affect ambient pollutant concentrations.  Receptor models contrast with the 
source models explained in other chapters.  Source models begin with source 
emissions and calculate ambient concentrations using mathematical 
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representations of meteorological dispersion, chemical transformation, and 
deposition.  Applying source and receptor models to the same situation reveals 
deficiencies in each that, when remedied, lead to a better assessment of pollution 
sources. 
 
1.2 Use and Applicability 
 
Receptor models have been used to quantify source contributions from direct 
emissions of suspended particulate matter (PM) (Chow and Watson, 2002a) and 
volatile organic compounds (VOC) (Watson et al., 2001a), evaluate the zone of 
influence of source emissions (Watson and Chow, 2001a), determine limiting 
precursors for ammonium nitrate (Blanchard et al., 2000), estimate contributions 
to secondary sulfate from nearby emitters (Watson et al., 2002b), evaluate the 
effects of sulfate reductions on ammonium nitrate levels (Ansari and Pandis, 
1998), identify uninventoried sources (Henry et al., 1997), improve emission 
inventories (Mendoza-Dominguez and Russell, 2000), and track the long-term 
effectiveness of pollution control strategies (Malm et al., 2002). 
 
In addition to outdoor air applications, receptor models have been used to 
evaluate personal and animal exposure (Godleski et al., 2000), estimate source 
contributions to urban and regional haze (Chow et al., 2002a; Pitchford et al., 
1999; Watson, 2002a, b), identify causes of nuisance and acid deposition (Anttila 
et al., 1994; Motelay-Massei et al., 2003), apportion toxic materials in water to 
their emitters (Pena-Mendez et al., 2001; Stout et al., 2001), and identify pollution 
sources in hazardous soil remediation (Murphy, 2000; Sims and Sims, 1995). 
 
Receptor models complement, rather than replace, source models by providing an 
independent method of assessing the influence of nearby and distant sources.  
Their results are part of the “weight of evidence” (U.S. EPA, 2001a) that needs to 
be assembled to define and justify cost-effective emission reduction strategies.  
All air quality models are imperfect representations of reality, and input data are 
seldom complete.  Using several types of models helps to identify and quantify 
model inaccuracies and to focus further investigation on the areas of greatest 
uncertainty.  Watson et al. (2002a) present a framework for using receptor and 
source models to solve air quality problems that consists of: 1) formulating a 
conceptual model; 2) identifying potential sources; 3) characterizing source 
emissions; 4) obtaining and analyzing ambient gas and particle samples for major 
components and source markers; 5) confirming source types with multivariate 
receptor models; 6) quantifying source contributions with chemical mass balance 
(CMB); 7) estimating source profile changes and the limiting precursor gases for 
secondary aerosols; and 8) reconciling receptor modeling results with source 
models, emission inventories, and receptor data analyses.  These steps systematize 
the weight of evidence approach. 
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1.3 Previous Receptor Model Reviews 
 
This chapter summarizes and updates results from, rather than replicates, previous 
reviews and specialty conference proceedings that present theory, application 
examples, and measurement requirements for receptor models (Brook et al. 
[2003], Chow [1985], Chow and Watson [2002a], Cooper and Watson [1980], 
Gordon [1980, 1988], Gordon et al. [1984], Henry et al. [1984], Henry [1997, 
2002], Hopke [1985, 1991, 1999, 2003], Hopke and Dattner [1982], Javitz and 
Watson [1988], Javitz et al. [1988], Pace [1986], Watson [1979, 1984], Watson et 
al. [1981, 1989, 2001a, 2002a], and Watson and Chow [2002a]).  Watson et al. 
(2002a) classified more than 500 citations of receptor modeling theory and 
applications, and this list is still incomplete.  Chow and Watson (2002a) 
summarized the results of 22 PM2.5 and PM10 (particles with aerodynamic 
diameters <2.5 µm and <10 µm, respectively) source apportionment studies 
conducted between 1990 and 1998.  Watson et al. (2001a) presented a similar 
summary for VOC receptor models. 
 
Early receptor model research was motivated by the need to develop emission 
reduction strategies for the attainment of the Total Suspended Particulate (TSP, 
mass of particles with aerodynamic diameters < ~ 40 µm) standards and PM10 
National Ambient Air Quality Standards (NAAQS) in many urban areas.  
Receptor modeling studies showed the importance of long-range sulfate transport 
(Lioy et al., 1982 and Mueller et al., 1983), fugitive dust (Gatz et al., 1981), 
vegetative burning (Watson, 1979), meat cooking (Rogge et al., 1996), and cold 
start/high emitting vehicles (Watson et al., 1998a) to ambient PM.  These sources 
were previously omitted from local emission inventories, so no form of source-
oriented modeling would estimate their contributions.  When applied to VOCs 
(Fujita et al., 1992, 1994, 1995), receptor modeling resulted in major 
improvements to mobile source emission estimates (California Air Resources 
Board, 2000). 
 
 
2 Receptor Model Types 
 
Figure 1 categorizes receptor models based on their use of multivariate PM or 
VOC properties, measured at a receptor, and by their combination with source 
modeling concepts.  Each receptor model type can be applied independently or in 
combination with other model types.  Table 1 lists the types, strengths, and 
weaknesses of the different model types. 
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Figure 1.  Summary of receptor models and source/receptor techniques. 
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Table 1.  Strengths and weaknesses of different receptor model types (based 
on Brook et al., 2003 and Watson et al., 2002a).  Citations given below are 
illustrative rather than comprehensive and are recommended for further 
details. 

 
Receptor Model Description Strengths Weaknesses 
Chemical Mass 
Balance (CMB)  
(Hidy and 
Friedlander 
[1971], Watson 
[1979], and 
Watson et al. 
[1984, 1991]) 

Ambient chemical 
concentrations are 
expressed as the sum 
of products of species 
abundances and 
source contributions.  
These equations are 
solved for the source 
contribution 
estimates when 
ambient 
concentrations and 
source profiles are 
used as input.  
Several different 
solution methods 
have been applied, 
but the effective 
variance least squares 
estimation method is 
most commonly used 
because it 
incorporates 
precision estimates 
for both source and 
ambient input data 
into the solution and 
propagates these 
errors to the model 
outputs.  The tracer 
solution is also 
commonly used, in 
which one chemical 
component is 
assumed to be unique 
and in a constant 
abundance in each 
source type. 

• Simple to use, 
software available. 
• Quantifies major 
primary PM source 
contributions with 
element, ion, and 
carbon 
measurements, and 
VOC contributions 
with > 50 non-
methane 
hydrocarbon 
measurements. 
• Quantifies 
contributions from 
source types with 
single particle and 
organic compound 
measurements. 
• Provides 
quantitative 
uncertainties on 
source contribution 
estimates based on 
input concentrations, 
measurement 
uncertainties, and 
collinearity of 
source profiles. 
• Has potential to 
quantify secondary 
sulfate contributions 
from single sources 
with gas and particle 
profiles when 
profiles can be 
“aged” by chemical 
transformation 
models.   

• Requires 
representative source 
profiles, and common 
source and receptor 
measurements of 
observables, that are 
not always available. 
• Assumes all 
observed mass is due 
to the sources selected 
in advance, which 
involves some 
subjectivity. 
• Does not directly 
identify the presence 
of new or unknown 
sources. 
• Chemically similar 
sources may result in 
collinearity without 
more specific 
chemical markers.   
• Typically does not 
apportion secondary 
particle constituents to 
sources. Must be 
combined with profile 
aging model to 
estimate secondary 
PM. 

Enrichment 
Factor (EF) 
(Dams et al. 
[1971] and 
Reimann and de 
Caritat [2000]) 

The ratios of 
atmospheric 
concentrations of 
elements to a 
reference element are 
compared to the same 
ratios in geological 
material, marine 

• Simple, no 
software needed. 
• Indicates presence 
or absence of 
emitters. 
• Inexpensive. 
• Provides evidence 
of secondary PM 

• Semi-quantitative 
method, often not 
source specific.   
• Requires source 
composition data.   
• More useful for 
source/process 
identification than for 
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Receptor Model Description Strengths Weaknesses 
aerosol, or vehicle 
exhaust.  Higher 
ratios are attributed to 
anthropogenic 
sources or secondary 
aerosol.  Local soil 
and road dust 
compositions often 
differ from global 
crystal compositions.  
Heavy metal 
enrichments are 
attributed to 
industrial emitters.  
Potassium 
enrichment is 
attributed to burning 
and cooking.  Sulfur 
enrichment is 
attributed to 
secondary sulfate. 
OC enrichment is 
attributed to 
secondary organics.  

formation and 
changes in source 
impacts by changes 
in ambient 
composition.  

quantification. 

Multiple Linear 
Regression 
(MLR) 
(Kleinman et al. 
[1980], Morandi 
et al. [1991], and 
Malm and 
Gebhart [1997]) 

Mass, chemistry, or 
light extinction is 
expressed as linear 
sums of regression 
coefficients times 
source marker 
concentrations 
measured at a 
receptor.  The 
regression 
coefficients represent 
the inverse of the 
chemical abundance 
of the marker species 
in the source 
emissions.  The 
product of the 
regression coefficient 
and the marker 
concentration for a 
specific sample is the 
tracer solution to the 
CMB equation that 
yields the source 
contribution.   

• Implemented by 
many statistical 
software packages. 
• Operates without 
source profiles. 
• Abundance of 
marker species in 
source is determined 
by inverse of 
regression 
coefficient. 
• Apportions 
secondary PM to 
primary emitters 
when primary 
markers are 
independent 
variables and 
secondary 
component (e.g., 
sulfate) is dependent 
variable.  

• Requires a large 
number of ambient 
measurements. 
• Marker species 
must be from only the 
sources or source 
types examined. 
• Limited to sources 
or source areas with 
markers. 
• Abundance of 
marker species in 
emissions is assumed 
constant with no 
variability.  

Hierarchical 
Cluster Analysis 
(Gether and Seip 

Multivariate 
statistical procedure 
to group data based 

• Simple, software 
available. 
• Detects natural 

• Semi-quantitative 
method. 
• Requires large data 
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Receptor Model Description Strengths Weaknesses 
[1979], Hopke et 
al. [1976], Saucy 
et al. [1987], and 
Wilkinson 
[1990]) 

on similarities 
between observables.  
Usually presented by 
a Euclidian distance 
between each pair of 
observables.  

data groupings 
without prior 
knowledge of group 
characteristics. 
• Can be used for 
either spatial or 
temporal analysis. 

sets. 
• Requires prior 
knowledge of sources 
to select key species 
indicative of potential 
emission sources in 
the study area. 

Eigenvectors 
(Principal 
Component 
Analysis [PCA], 
Factor Analysis 
[FA], Empirical 
Orthogonal 
Functions 
[EOF])  
(Blifford and 
Meeker [1967], 
Henry and Hidy 
[1982], Henry 
[1987], Henry et 
al. [1991], 
Hopke [1988], 
Thurston and 
Spengler [1985], 
and White 
[1999]) 
 

Correlations or 
covariances are 
calculated from 
chemical 
measurements taken 
on simultaneous 
samples at a large 
number of locations.  
Eigenvectors of this 
correlation or 
covariance matrix 
represent a spatial 
distribution of source 
influence over the 
area, providing that 
the samplers have 
been located to 
represent the 
gradients in source 
contributions.   

• Models such as 
PCA and FA 
identify major 
source types, and 
relate secondary 
components to 
source via 
correlations or 
covariances. 
• Sensitive to the 
influence of 
unknown and/or 
minor sources. 
• Influenced by 
extreme values. Can 
be used to identify 
data outliers. 

• Large data sets 
required. 
• Most models are 
based on statistical 
associations (e.g., 
common variations or 
associations among 
groups of variables) 
rather than a 
derivation from 
physical and chemical 
principles. 
• Vectors or 
components are 
usually related to 
broad source types as 
opposed to specific 
categories or sources. 
• Many subjective 
rather than objective 
decisions and 
interpretations of 
eigenvectors as 
sources.  
• Do not always 
produce unique, 
physically valid 
solutions. 

Non-Negative 
Least Squares 
(Positive Matrix 
Factorization 
[PMF]) 
(Hopke et al. 
[2003], Kim and 
Hopke [2004], 
Kim et al. 
[2004], Paatero 
and Tapper 
[1994] and 
Poirot et al. 
2002) 

Mass balance 
equations are solved 
by least squares 
minimization for 
many samples, not 
just for a single one.  
This provides an 
overdetermined set of 
equations that allows 
source profile 
abundances, as well 
as source 
contribution 
estimates, to be 
calculated.  

• Software 
available.   
• Requires 
uncertainty 
estimates of ambient 
measurements.  Can 
handle missing or 
below-detection-
limit data. 
• Weights species 
concentrations by 
their analytical 
precisions. 
• Constrained to 
non-negative species 
concentrations or 
source contributions. 

• Requires large 
ambient data sets. 
• Need to judge the 
number of retained 
sources. 
• Requires measured 
source profiles to 
assign categories to 
derived profiles. 
• Weights only by 
uncertainty of 
receptor 
measurements, not by 
uncertainties in source 
profiles. 
• Several adjustable 
parameters and initial 
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Receptor Model Description Strengths Weaknesses 
• Provides solution 
evaluation tool (e.g., 
R2, Chi-square). 
• Derives source 
profiles from 
ambient 
measurements as 
they would appear at 
the receptor. 

conditions must be 
selected, often based 
on trial and error. 

Edge Detection 
(RMAPS, 
UNMIX)  
(Henry [1997], 
and Henry et al. 
[1999]) 

Edges are constant 
ratios among 
chemical components 
that are detected in 
multi-dimensional 
space.  Some samples 
in the input data must 
have no contribution 
from the sources to 
define an edge.  The 
edges detected by 
models such as 
UNMIX are 
extensions of self-
modeling curve 
resolution to n 
dimensions sources.  

• Software 
available. 
• Does not require 
assumptions about 
number or 
composition of 
sources. 
• Provides source 
contribution 
estimate to each 
sample. 
• Provides 
evaluation tool (e.g., 
R2, S/N ratio). 

• Requires large 
ambient data sets. 
• Does not make 
explicit use of errors 
or uncertainties in 
ambient 
concentrations or 
source profiles. 
• Can produce an 
infinite number of 
solutions with the 
same root mean 
square error. 
• Need to assume or 
predetermine number 
of retained sources. 
• May result in no 
solution. 

Time Series 
(e.g., spectral 
analysis, auto 
regression 
analysis, 
intervention 
analysis, trend 
analysis, transfer 
function models) 
(Perrier et al. 
[1995], 
Somerville and 
Evans [1995], 
Hies et al. 
[2000], Jorquera 
et al. [2000], and 
Watson and 
Chow [2001a]) 

Provides 
understanding of 
temporal variation of 
mass and chemical 
concentrations that 
coincide with 
meteorology and 
source information.  
Assists in 
formulating 
conceptual models 
and selecting sources 
for further modeling. 
Assumes that 
different source types 
or sub-types may 
have some 
periodicity to their 
emissions that allows 
separation of 
different source 
impacts. 

• Can be used to 
determine statistical 
trends in data 
sequences. 
• Provides clues to 
influences from 
meteorology and 
sources. 

• Requires 
continuous 
measurements. 
• Semi-quantitative 
descriptive data 
analysis does not 
provide specific 
source impact 
information. 

Neural Networks 
(Bishop [1995], 
Chelani et al. 

Attempts to simulate 
pattern recognition 
processes of the 

• Makes no prior 
assumptions about 
data distributions. 

• Semi-quantitative 
method. 
• Requires large 



16B   Receptor Models 463 

Receptor Model Description Strengths Weaknesses 
[2002], and Gao 
et al. [1994])   

human brain by 
creating classification 
rules.  Known inputs 
and outputs are 
presented to a neural 
network that 
simulates the human 
thought process.  The 
network assigns 
weights to the inputs 
that reproduce the 
outputs.  Once these 
patterns have been 
established for cases 
where outputs are 
known, weights can 
be applied to input 
data to estimate 
outputs.   

• Deals with 
nonlinear 
relationships. 
• Neural networks 
can provide function 
relationships and 
represent a solution 
to the CMB 
equations. 

ambient data sets. 
• Requires training 
set containing known 
source/receptor 
relationships. 
• Subjective 
association of outputs 
with sources. 
 

Backward 
Trajectory 
Analysis 
(Ashbaugh 
[1983], Draxler 
[1999], and 
Green and 
Gebhart [1997]) 

Estimates the path 
and location of the air 
reaching a receptor 
based on prior wind 
movements.  The 
simplest form 
classifies pollutant 
concentrations or 
source contributions 
by surface wind 
direction in a 
pollution rose.  More 
complex backward 
trajectories add 
hourly wind vectors 
generated by a 
meteorological 
model. 

• Traces or projects 
the route of air mass 
transport over 
hundreds to 
thousands of 
kilometers, and on 
the order of several 
days. 
• Can generate 
multiple trajectories 
with different time 
intervals. 
• Can represent 
plume spread from 
vertical wind shear 
at different hours of 
day, and provide 
better understanding 
of day/night 
transition. 

• Relies on wind 
observations with 
limited temporal and 
spatial density. 
• Highly dependent 
on wind interpolation 
algorithm and start 
height/vertical 
dispersion parameters. 
• Accuracy and 
precision of the wind 
measurements dictate 
the model output. 
• Unable to resolve 
small-scale 
turbulence. 
• Provides history of 
air parcel travel path, 
but cannot tell how 
much pollution was 
picked up along the 
way or differentiate 
between pollutant 
contributions. 
• More useful in 
regional than in  
urban-scale 
applications. 

Aerosol 
(Gas/Particle) 
Equilibrium 
(Ansari and 
Pandis [1998], 

The portions of a 
semi-volatile species 
in the gas and particle 
phase are estimated 
based on receptor 

• Estimates 
partitioning between 
gas and particle 
phases for ammonia, 
nitric acid, 

• Highly sensitive to 
temperature and 
relative humidity.  
Short duration 
samples are not 
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Receptor Model Description Strengths Weaknesses 
Blanchard and 
Hidy [2003], 
Blanchard et al. 
[2000], Stelson 
and Seinfeld 
[1982], and 
Watson et al. 
[1994a]) 

measurements to 
determine which 
precursor is in excess 
and which needs to 
be diminished in 
order to reduce 
concentrations in the 
particle phase.  The 
theory is most highly 
developed for 
ammonium 
nitrate/ammonium 
sulfate and has been 
used to determine the 
extent to which 
ammonia or oxides of 
nitrogen/sulfur 
dioxide reductions 
are needed to reduce 
ambient ammonium 
nitrate levels.   

ammonium nitrate, 
and aerosol water 
content. 
• Allows evaluation 
of effects of 
precursor gas 
reductions on 
ammonium nitrate 
levels. 

usually available. 
• Gas-phase 
equilibrium depends 
on particle size, which 
is not often known in 
great detail. 
• Sensitivity to 
aerosol mixing state, 
which is not 
completely 
understood or 
quantified. 

Aerosol 
Evolution 
(Lewis and 
Stevens [1985], 
Stockwell et al. 
[2001], and 
Watson et al. 
[2002b]) 

Source profiles 
containing particle 
chemical components 
and gaseous 
precursors are 
mathematically 
“aged” using a 
chemical reaction 
scheme.  Source 
profile evolution has 
been done using 
Lagrangian source 
models to simulate 
the conditions that a 
profile might 
encounter en route 
between source and 
receptor. 

• Can be used 
parametrically to 
generate several 
profiles for typical 
transport and 
meteorological 
situations that can be 
used as input to 
mass balance 
equations. 

• Very data-intensive.  
Input measurements 
are often unavailable. 
• Derives relative, 
rather than absolute, 
concentrations. 
• Level of complexity 
may not adequately 
represent profile 
transformations. 

 
Receptor as well as source models start with a conceptual model that proposes 
plausible theories about the causes of an elevated pollutant concentration or 
effect.  The conceptual model is formed from previous experience (e.g., tests on 
similar sources, gas and particle transport and transformation under similar 
meteorological conditions), the nature of the problem (e.g., exceeding an air 
quality standard, consistently poor visibility over a local area or large region), and 
available measurements (e.g., ambient, source, and meteorological).  A 
conceptual model (Pun and Seigneur [1999], Watson et al. [1998b], Watson and 
Chow [2002b]) provides reasonable, though not necessarily accurate, explanations 
of: 1) potential sources; 2) precursor gas and particle emission characteristics; 3) 
meteorological conditions that affect emissions, transport, and transformation; 4) 
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size, chemical, and temporal characteristics of precursor gas and particle 
emissions; and 5) frequency, magnitude, and composition of the PM or VOC 
levels.  The conceptual model is used to design a measurement program that 
considers the location and number of monitoring sites, sampling frequencies and 
periods, sampling durations, properties that are quantified, samples that are 
selected for laboratory analysis, and the modeling and data analysis methods that 
will be applied. 
 
Trajectory, aerosol evolution, and equilibrium models are described from a 
source-oriented point of view in other chapters and are not examined in detail 
here, except to note that they can also be used in a receptor-oriented mode, as 
cited in the references.  An ammonium nitrate chemical equilibrium model, for 
example, can be used as a source model within the context of an air quality 
model.  It can also be used as a receptor model to determine whether nitric acid 
(HNO3) or ammonia (NH3) limits ammonium nitrate formation when NH3, HNO3, 
hydrochloric acid (HCl), sulfur dioxide (SO2), sulfuric acid (H2SO4), ammonium 
(NH4

+), nitrate (NO3
–,), sulfate (SO4

=), temperature, and relative humidity 
measurements are available at a receptor.  Wind models have source-oriented 
forward trajectory modes and receptor-oriented backward trajectory modes. 
 
Chemical and physical analysis methods are often termed receptor models, but 
they serve as inputs to models.  Carbon 14 (14C) single particle microscopic 
analysis, gas chromatograms, x-ray spectra, and many other analytical outputs are 
analogous to source profiles (mass fractions of emitted chemical components) in 
that they represent a pattern that might allow a source contribution to be identified 
and quantified.  Without the receptor model mathematics and applications 
framework, however, these methods do not provide valid, quantifiable source 
apportionments. 
 
 
3 Multivariate Receptor Model Mathematics 
 
Receptor models are incorrectly referred to as “statistical” methods (e.g., Seinfeld 
and Pandis, 1998).  This is inaccurate because the statistical distributions, often-
missing data, and variable uncertainties of the input measurements do not 
conform to the rigorous assumptions required for statistical tests.  Furthermore, 
statistical significance tests are rarely used, and are not useful, for source 
apportionment studies.  This misconception partially arises because much of the 
receptor modeling mathematics is also used to determine and test statistical 
associations in other areas of science.  There are also situations where the physical 
basis for the receptor model formulation has not yet been clearly understood or 
demonstrated. 
 
The derivation presented below (Watson, 1984) shows the physical and 
mathematical relationships between emission models, source models, and receptor 
models and the simplifying assumptions that are made when these models are 
applied. 
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Summation indices (lower case) are defined as follows:   
• i = Pollutant, representing any quantifiable property such as an element 

(e.g., aluminum, arsenic, selenium, etc.), water soluble ions (e.g. SO4
=, 

NO3
–, NH4

+, etc.), an operationally defined carbon fraction (organic 
carbon [OC], elemental carbon [EC]), a specific volatile or organic carbon 
compound (e.g., benzene, benzo(a)pyrene), an isotopic abundance (e.g., 
14C, lead 210 [210Pb], sulfur 34 [34S]), or particle property (e.g., vanadium- 
and nickel-rich particle, S-shaped spiny particle).   

• j = Source type, a grouping of individual source emissions with similar 
compositions that differ from the compositions of other source types.  
Common source types include geological material, sea salt, vegetative 
burning, cooking, motor vehicle exhaust, evaporated gasoline, and 
architectural coatings. 

• k = When the sample was taken (i.e., continuous hourly averages to days 
representing different seasons, days of the week, and times of day). 

• l = Receptor location, often selected to be source dominated (e.g., near 
roadways or other emitters), exposure dominated (where people live, 
work, and play), transport dominated (between major source areas), and 
boundary dominated (to determine what is entering a monitoring domain).  
Source-dominated samples may be used to obtain source profiles. 

• m = Source subtype, a specific source or groups of emitters within a 
source type that have similar source compositions or locations.  Paved 
roads, unpaved roads, agricultural soil, and industrial dust are geological 
source subtypes.  Diesel and gasoline engine exhaust are vehicle exhaust 
subtypes. Source subtypes may become source types with the 
measurement of additional chemical components or directional sampling 
that allow them to be distinguished by the receptor model. 

 
Upper case indices designate the total number.  Symbols used in the model 
equations and typical units are described as follows: 

• Ajkm = Activity that causes emissions for source type j corresponding to 
time period k for subtype m (unit of activity/sec).  Typical activities are 
vehicle miles traveled, amount of fuel consumed, or amount of product 
produced.  Population densities are often used as surrogates for area 
source activities. 

• Cikl = Concentration of pollutant i for time period k at location l (unit of 
µg/m3, ng/m3, ppm, or ppb).  This is the receptor concentration. 

• Dklm = Dispersion and mixing of emissions from source type between 
subtype m and receptor l corresponding to time period k (sec/m3). 

• Fij = Fractional quantity of pollutant i in source type j (unitless).  These 
are elements of the source profile for different source types.  For PM 
measurements, profile abundances are usually normalized to mass 
emissions from a source in the desired size range.  They may also be 
normalized to the weighted sum of the major species emitted or to an 
individual element that is present in all of the source types being modeled.  
Owing to the large number of species, total VOC is not usually available 
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for normalization.  Options for VOC source normalization are discussed 
below. 

• Qjkm = Emission rate from subtype m of source type j corresponding to 
time period k (µg/sec). 

• Rjkm = Rate of emissions (emission factor) per unit of activity for subtype 
m of source type j corresponding to time period k (µg/unit of activity). 

• Tijklm = Transformation of pollutant i between source subtype m of type j 
and receptor l corresponding to time period k (unitless). 

• Sjkl = Contribution from source type j for time period k at receptor l 
(µg/m3, ng/m3, ppm, or ppb). 

• Wik = Weighting of differences between measured and calculated 
concentrations for pollutant i on sample k. 

 
3.1 Emission Model 
 
Emission rates for a pollutant from a source are usually estimated in an inventory 
by:  

 
 jkmjkmjkm ARQ =                                            (1) 

 
The Rjkm emission factors are derived from a limited number of tests on 
representative emitters, and are applied over a wide range of emitters that may 
constitute M individual sources or J source types.  An emission inventory may 
include a category of “electrical generation” that consists of emissions from diesel 
generators, coal-fired power stations, natural gas burners, and residual oil 
combustors.  Each of these would be classified as a separate source type for 
receptor modeling.  Diesel generators would be grouped with other diesel 
emissions from heavy-duty trucks, farm equipment, and construction equipment 
because their chemical source profiles would be similar.  The activity level might 
be specific to location and time, but this is true only of specially constructed, 
gridded inventories.  Most inventories for mobile and area sources are compiled 
as annual averages over countywide and statewide areas.  Large point sources can 
usually be associated with a specific location. 
 
Source models take the form of: 
 

jkmijijklm
M

m
klmn

J

j
ikl QFTDC ∑∑=

== 11
                                    (2) 

 
All of the values on the right side of Equation (2) are inputs that estimate the 
concentration of a specific pollutant i at a specific time k and location l.  Other 
chapters in this book show that the linear form of this equation is a large, but 
necessary, simplification to show the relationship between the source and receptor 
models. 
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Receptor models used for source apportionment are based on the chemical mass 
balance equations: 
 

  SFC jkl
J

j
ijikl ∑=

=1
                                               (3) 

 
For this to be of use, species i must be such that Tijlm = 1, meaning that there is 
little change in the Fij between source and receptor, or that such changes can be 
adequately estimated with an aerosol evolution model and have been incorporated 
into the Fij.  A comparison of Equations (2) and (3) also implies that: 
 

∑=
=

M

m
jkmklmjkl QDS

1
                                         (4) 

 
In contrast to the source model, the ambient concentrations (Cikl) are known and 
the source contributions (Sjkl) are to be calculated.  The mass balance equations 
(Equation 3) can be solved for single samples if the source profiles (Fij) have been 
measured by minimizing the weighted sum of the squares of the differences 
between measured and calculated concentrations for individual samples: 
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The weights (Wik) can be set to 1, but they are usually selected to represent 
uncertainties in the ambient measurements and variability of the source profile 
abundances (Watson et al., 1984).  This minimization takes the same form as a 
multiple linear regression equation, but it is not used in the statistical sense that is 
usually associated with regression.   
 
Positive matrix factorization (PMF) attempts to derive source profiles from the 
ambient data themselves.  The PMF solution to the mass balance equations 
(Paatero and Tapper, 1994) minimizes the weighed sum of squares of the 
difference between measured and calculated concentrations over many samples:  
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With multiple samples and with rigorous assumptions, there are sufficiently more 
equations than unknowns to estimate values of source profiles as well as source 
contributions.  The derived profiles need to be associated with measured source 
compositions that can be determined only from source tests. 
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Watson (1984) showed how the eigenvector and multiple linear regression (MLR) 
models are derived from the mass balance equations and the simplifying 
assumptions that need to be made.  When source profiles are not measured, 
unique solutions to Equation (6) do not exist, and subjective interpretation is 
needed to judge the validity of the derived source profiles. 
 
 
4 Model Input Measurements 
 
Receptor models require multivariate measurements that are specific to gaseous 
precursors, particle sizes, chemical/physical/optical characteristics, temporal 
variations, and source locations.  Several sampling and analytical methods 
provide time-integrated samples of PM (ACGIH [2001], Baron and Willeke 
[2001], Chow [1995], Landsberger and Creatchman [1999]) and VOC (Zielinska 
and Fujita, 1994) that are collected in the field and analyzed in the laboratory.  In-
situ measurement systems (McMurry [2000], Middlebrook et al. [2003], Wang et 
al. [1999], Watson et al. [1998c], Yamamoto et al. [2002]) provide the 
opportunity to better associate ambient concentrations with specific wind 
directions and distances from the receptor.  Source emissions need to be measured 
for the same pollutants with methods comparable to those used at receptors. 
 
4.1 Source Profiles 
 
Source profiles are intended to represent a category or type of source, rather than 
individual emitters.  All receptor models require measured source profiles, even 
those that intend to derive these profiles from the ambient measurements.  The 
derived profiles must always be compared and evaluated against measured 
profiles that represent a source type.  The number and definition of these 
categories are limited by the degree of similarity between the profiles.  
Mathematically, this similarity is termed “collinearity” (Henry, 1992), which 
means that two or more of the CMB equations are redundant and the set of 
equations cannot be solved.  Owing to measurement error, however, CMB 
equations are never completely collinear in a mathematical sense.  When two or 
more source profiles are collinear, standard errors on source contributions are 
often very high.  Some source contributions may be unrealistically high, while 
others may be negative.  Determining the degree of collinearity is one of the main 
objectives of receptor model validation (Watson et al., 1998d). 
 
4.1.1 Common Emission Sources 
 
Emission inventories need to be examined before a receptor model is applied to 
determine which source profiles are needed, and which chemical components 
must be measured in local source emissions and ambient air.  These inventories 
can be less quantitative than those needed for source modeling.  Receptor models 
only need to identify potential emitters, not the individual emission rates.  Source 
types that are often combined due to its similarity or collinearity for PM and 
VOCs are: 
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• Vegetative burning and cooking:  Subtypes include fireplaces, wood 
stoves, prescribed burns, wildfires, char-broiling, and meat cooking.  
Some of these source subtypes may be separated when appropriate organic 
compounds are measured. 

• Diesel exhaust:  Subtypes include heavy- and light-duty cars and trucks, 
off-road equipment, stationary engines for pumps and generators, ship 
generators, and locomotives.  

• Gasoline exhaust:  Subtypes include heavy- and light-duty cars and trucks, 
and small engines.  Emission inventories do not usually contain 
breakdowns by cold-starts and visible smoking vehicles, although these 
subtypes might be discriminated by certain organic compounds in a 
profile.  Two-stroke engine profiles may differ from four-stroke engine 
profiles.  

• Gasoline evaporative emissions:  Subtypes include fueling stations and 
hot-soak vehicles. 

• Fugitive dust:  Subtypes include paved roads, unpaved roads, agricultural 
tilling, dairy/feedlot soil, construction, wind erosion, and industrial 
aggregate.  These subtypes can sometimes be separated based on single 
particle profiles or the measurement of specific mineral composition 
(Ashbaugh et al. [2003], Chow et al. [2003]). 

• Solvents and coatings:  Subtypes include evaporation from paints, 
degreasers, and solvents.  These subtypes can be separated when the 
specific solvent compounds are known. 

• Metals:  Subtypes include copper smelters, lead smelters, steel mills, and 
aluminum mills.  These often have similar metal emissions but in different 
abundances depending on the process.  

• Aggregate handling:  Subtypes include cement, quarrying, and mining.  
Ores are often enriched in the materials being extracted, thereby allowing 
their separation.  When low-level measurements of trace elements such as 
copper, zinc, and lead are made, metal processing operations that use these 
materials can be classified into separate source types. 

 
Vehicle-related VOC emissions, including exhaust, evaporated fuel, and liquid 
fuel, are ubiquitous in all urban areas.  Architectural (e.g., paints) and industrial 
solvents (e.g., cleaning and process solvents, as in printing) are also common, but 
highly variable, in most urban areas.  Petrochemical production and oil refining 
are more specific to certain urban settings, such as the Texas coast, where these 
activities are numerous.  Biogenic emissions are larger in the eastern U.S., where 
forests are lush, in contrast to the arid west.  VOC emissions in inventories are 
often reported in equivalent units of methane or propane.  Comparisons of relative 
source attributions to emission inventories require appropriate reconciliation 
between the inventory and source contribution units. 
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4.1.2 Source Profile Normalization Options 
 
Both gaseous and particulate species can be included in a source profile.  As 
noted in the definition of Fij above, one of the difficulties in combining VOC and 
PM2.5 in a source apportionment is that there are some particle sources (e.g., 
suspended dust) that have negligible VOC components and some VOC sources 
(e.g., solvents, evaporated gasoline, biogenics) that have negligible particle 
components.  There are many sources, such as vehicle exhaust, cooking, and 
wood combustion, that have large VOC and PM components, and profiles that 
normalize both gas and particle components to PM2.5 mass may increase the 
utility of the profiles for both VOC and PM source apportionment studies. 
 
Individual profiles are formed from individual source samples, and the precisions 
of the numerator and denominator are propagated (Watson et al., 2001b) to obtain 
the individual profile uncertainties.  These individual profiles are further 
combined to obtain the source profiles used as CMB model input or for 
comparison with those derived from ambient data.  Chow et al. (2003) established 
a framework that uses statistical measures to composite similar profiles.  The 
simplest composite consists of the averages and standard deviations of 
abundances for all individual profiles within a group.  Outlier tests are applied to 
remove individual profiles that unduly bias the averages and standard deviations.  
There are always some outliers in any series of source tests owing to the 
difficulties in field sampling and emission variability.  For this reason, it is 
important to obtain five or more samples that run the range of operating 
conditions and fuels for a given source type to obtain representative source 
profiles. 
 
VOC abundances are defined by several different methods.  Watson et al. (2001a) 
summarize VOC terms in common use that represent different fractions of 
atmospheric organic material.  These include reactive organic gases (ROG), total 
organic gases, photochemical assessment monitoring station (PAMS) species, 
non-methane hydrocarbons (NMHC), heavy hydrocarbons (C10-C20), carbonyl 
compounds, non-methane organic compounds (NMOG), semi-volatile organic 
compounds (SVOC), and total VOC.  Non-standard variable definitions and units 
are an impediment to VOC source apportionment.  VOC concentrations are 
usually reported in ppbC or µg/m3 at local temperature and pressure.  Either unit 
is acceptable for receptor modeling, but the source profile ratios must be 
consistent with the ambient measurements.  VOC fractional abundances have 
been normalized by: 1) NMHC, consisting of ROG and an unidentified fraction; 
2) the sum of the quantified or most abundant measured compounds, which varies 
depending on the study; 3) the sum of all canister measurements, including non-
reactive gases such as halocarbons; and 4) NMOG, the sum of all VOCs measured 
from all applied methods.  These profile differences preclude the comparability 
and use of profiles from different studies.  Watson et al. (2001a) advocate 
normalization to the sum of the 56 PAMS species in ppbC that are almost 
universally quantified in canister samples by the U.S. Environmental Protection 
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Agency (EPA) TO-14 method1.  Measurements from other canister analyses, 
Tenax and 2,4-dinitrophenylhydrazine (DNPH), can also be normalized to this 
sum.  With this common convention, re-normalization to NMOG or other 
categories is straightforward. 
 
4.1.3 Requirements for a Source Profile Library 
 
The current SPECIATE database (U.S. EPA, 1999) includes 376 PM and 610 
VOC source profiles, most of which are dated before 1989.  These source profiles 
need to be updated with more contemporary data to enhance their usefulness for 
both source and receptor models.  The objectives of compiling source profile 
libraries are to: 1) identify chemical and physical characteristics of primary PM 
and VOC emissions; 2) tabulate and document chemical abundances and 
variabilities from source tests; and 3) provide data interfaces to receptor models 
and speciated emission inventories.  These databases can be used to: 1) create 
speciated emission inventories for regional haze, PM2.5, and ozone modeling; 2) 
estimate hazardous and toxic air pollutant emissions from primary PM and VOC 
emissions; 3) provide input to mass balance receptor models; and 4) verify 
profiles derived from ambient measurements by the multivariate receptor models 
listed in Table 1. 
 
The minimum source profile requirements to compile a library are:  

• No hot stack samples or hot stack/impinger analyses should be included.  
Only dilution sampler results come close to representing ambient air 
concentrations.  Method 201/202 certification results (U.S. EPA [1996, 
1997]) for PM10 do not represent actual, condensed, particle emissions 
(England et al., 2000).  

• VOC profiles should include, at a minimum, the 56 PAMS species (U.S. 
EPA, 2001b), plus other available species (additional light hydrocarbons 
from canisters, heavy hydrocarbons from Tenax, and carbonyls from 
DNPH).  PM profiles should include, at a minimum, major elements (at 
least those reported by the National Park Service [NPS], Interagency 
Monitoring of Protected Visual Environments [IMPROVE] [Malm et al., 
2000], and EPA’s PM2.5 Speciation Trends Network [STN]); major water-
soluble ions (SO4

= and NO3
- at a minimum–preferably NH4

+, water-
soluble sodium, magnesium, potassium, calcium, chloride, fluoride, and 
phosphate); and carbon fractions (total carbon, OC, and EC, preferably 
with other fractions that are defined by the method such as the eight 
IMPROVE fractions [Chow et al., 1993, 2001, 2004a], and carbonate 
carbon [Chow and Watson, 2002b]).  Organic functional groups, organic 
compounds, isotopic abundances, and single particle properties should be 
included where they are reported, well-defined, and can be normalized to 
PM mass or the sum of PAMS VOCs. 

• Profiles must include their chemical abundances and variabilities (Chow et 
al. [2003, 2004b], Watson and Chow [2001b], Watson et al. [2001c]).  

                                                 
1 http://www.epa.gov/ttnamti1/files/ambient/airtox/to-14ar.pdf 

http://www.epa.gov/ttnamti1/files/ambient/airtox/to-14ar.pdf
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Preference should be given to profiles that represent an average and 
standard deviation of individual samples.  Analytical uncertainties for 
individual source profiles should be identified as such; they are typically 
smaller than the variability among several samples taken at different times 
from the same emitter or from samples taken from different, but similar, 
emitters (Chow et al., 2003).  The method for estimating variabilities 
should be documented.  Some references report emission rates instead of 
emission profiles.  Emission rates that are not normalized are not useful 
for receptor modeling. 

 
Necessary profile documentation includes: 

• The primary reference document for the profile.  Secondary references 
should be supplied when original profiles have been modified (i.e., by 
aerosol aging, different sample compositing, etc.).  Gray literature reports 
should be scanned and made available with the database.  Copyrighted 
journal articles and book chapters can be obtained from libraries.   

• The profile database should include (in the notes column or other fields) 
the specific size fraction, type of source sampling (e.g., hot stack 
[presumably excluded], dilution stack, diluted plume [e.g., airborne], 
source dominated, grab/resuspension), background corrections, chemical 
analysis methods, sample compositing criteria and methods, and number 
and types of profiles in a composite. 

 
4.2 Ambient Measurements 
 
Receptor observables are a subset of the source profile species and must include 
at least those species in the source profiles that allow sources to be separated by 
the receptor model. 
 
4.2.1 Physical and Chemical Characteristics of Receptor Concentrations 
 
Table 2 associates VOC, semi-volatile organic compounds (SVOC), and PM 
measurements with measurement methods.  For gas- and particle-phase organics, 
a standard set of species is needed for all studies.  Table 3 contains C2 to C12 
VOCs that can be obtained by canister sampling, C8 to C20 VOCs by Tenax 
sampling, and SVOC and PM organic compounds by Teflon-coated glass-fiber 
filter and PUF/XAD-4/PUF solid adsorbent sampling.  These compounds are 
determined by thermal desorption/cryogenic preconcentration, followed by gas 
chromatography (GC) separation and flame ionization or electron capture 
detection and/or combined GC/mass spectrometry/Fourier transform infrared 
detection.  One of the difficulties with organic compound measurements is that 
different researchers measure different compounds by different methods, so that 
ambient and source concentrations are not always compatible.  Seinfeld and 
Pandis (1998) and Watson et al. (2002a) discuss which species are useful for 
identifying different source types and provide more extensive references to 
applications and analytical techniques. 
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Table 2.  Inorganic and organic species and measurement methods 
commonly used for receptor modeling. 

 
Observables Chemical Analysis Method 

Particulate mass on 
filters 

Gravimetry 

Particulate elements (Na 
to U) on filters  

X-ray fluorescence (XRF) 
Proton-induced x-ray emission (PIXE) 
Instrumental neutron activation analysis (INAA) 
Inductively coupled plasma / emission spectroscopy 
(ICP/ES) 
Inductively coupled plasma / mass spectrometry 
(ICP/MS) 

Particulate water-soluble 
anions on filters (F –, Br–, 
Cl–, NO3

–, PO4
≡, SO4

= ) 

Ion chromatography (IC) 
Automated colorimetry (AC) 

Particulate cations on 
filters (NH4

+, Na+, Mg++, 
K+, Ca++) 

Ion chromatography (IC) 
Atomic absorption spectrophotometry (AAS) (flame or 
graphite) 
Automated colorimetry (AC) 

Particulate carbon 
(organic carbon [OC], 
elemental carbon [EC], 
carbonate, other 
fractions defined by 
thermal or optical 
properties) 

Thermal/optical reflectance (TOR) 
Thermal/optical transmission (TOT) 
Thermal manganese oxidation (TMO) 

Particulate single-
particle morphology on 
filters 

Computer-controlled scanning electron microscopy 
(CCSEM) 
Electron Microprobe 
Transmission Electron Microscopy 

C2-C10 organics, volatile 
organic compounds 
(VOC) 

Canister and gas chromatography measurement with 
various detectors 

C11-C20 organics, VOCs 
and semi-volatile 
organic compounds 
(SVOC) 

Tenax cartridge with thermal desorption and gas 
chromatography with various detectors 

SVOC (polycyclic 
aromatic hydrocarbons 
[PAH]) 

Filter/PUF/XAD/PUF with extraction in solvents of 
different polarities and gas chromatography with various 
detectors 

Carbonyl VOCs 2, 4-dinitrophenylhydrazone (DNPH)-coated C18 cartridge 
and gas or liquid chromatography 

Oxygenated VOCs  
(e.g., alcohol, ethers, 
esters) 

Carbotrap canister, solvent extraction, derivitization, and 
gas chromatography with various detectors 



 

 

Table 3.  List of volatile organic compounds (VOCs), photochemical assessment monitoring station (PAMS) target compounds, semi-
volatile organic compounds (SVOCs), and particulate organic compounds. 

 
1.  C2 to C12 VOC samples acquired by canister samplers using gas chromatography (GC) with mass spectrometry (MS) for analysis of 123 VOCs: 
 

propene 
propane 
isobutane 
1,3-butadiene 
n-butane 
methanol 
t-2-butene 
1&2-butyne 
c-2-butene 
3-methyl-1-butene 
ethanol 
isopentane 
1-pentene 
2-methyl-1-butene 
n-pentane 
isoprene 
t-2-pentene 
c-2-pentene 
2-methyl-2-butene 
2,2-dimethylbutane 
cyclopentene 

4-methyl-1-pentene 
3-methyl-1-pentene 
cyclopentane 
2,3-dimethylbutane 
methyl-t-butylether 
2-methylpentane 
2,2-dimethylpentane 
3-methylpentane 
2-methyl-1-pentene 
1-hexene 
n-hexane 
t-3-hexene 
t-2-hexene 
2-methyl-2-pentene 
cis-3-methyl-2-pentene 
c-3-hexene 
c-2-hexene 
trans-3-methyl-2-pentene 
methylcyclopentane 
2,4-dimethylpentane 
2,2,3-trimethylbutane 

1-methylcyclopentene 
benzene 
3,3-dimethylpentane 
cyclohexane 
4-methylhexene 
2-methylhexane 
2,3-dimethylpentane 
cyclohexene 
3-methylhexane 
1,3-dimethylcyclopentane 
3-ethylpentane 
1-heptene 
2,2,4-trimethylpentane 
t-3-heptene 
n-heptane 
2,4,4-trimethyl-1-pentene 
methylcyclohexane 
2,5-diemthylhexane 
2,4-diemthylhexane 
2,3,4-trimethylpentane 
toluene 

2,3-dimethylhexane 
2-methylheptane 
4-methylheptane 
3-methylheptane 
2,2,5-trimethylhexane 
1-octene 
1,1-dimethylcyclohexane 
n-octane 
2,3,5-trimethylhexane 
2,4-dimethylheptane 
4,4-dimethylheptane 
2,6-dimethylheptane 
2,5-dimethylheptane 
3,3-dimethylheptane 
ethylbenzene 
m- & p-xylene 
2-methyloctane 
3-methyloctane 
styrene 
o-xylene 
1-nonene 

n-nonane 
isopropylbenzene 
isopropylcyclohexane 
2,6-dimethyloctane 
alpha-pinene 
3,6-dimethyloctane 
n-propylbenzene 
m-ethyltoluene 
p-ethyltoluene 
1,3,5-trimethylbenzene 
o-ethyltoluene 
octanal 
beta-pinene 
1-decene 
1,2,4-trimethylbenzene 
n-decane 
isobutylbenzene 
sec-butylbenzene 
1,2,3-trimethylbenzene 
limonene 
indan 

indene 
1,3-diethylbenzene 
1,4-diethylbenzene 
n-butylbenzene 
1,2-diethylbenzene 
1,3-dimethyl-4-
ethylbenzene 
isopropyltoluene 
nonanal 
1-undecene 
n-undecane 
1,2,4,5-tetramethylbenzene 
1,2,3,5-tetramethylbenzene 
1,2,3,4-tetramethylbenzene 
2-methylindan 
1-methylindan 
1-dodecene 
naphthalene 
n-dodecane 

16B
   R

eceptor M
odels 

475



 

 

2.  Photochemical Assessment Monitoring Stations (PAMS) monitor 56 target VOCs: 
ethylene 
acetylene 
ethane 
propylene 
propane 
isobutane 
1-butene 
n-butane 
t-2-butene 
c-2-butene 
isopentane 

1-pentene 
n-pentane 
isoprene 
t-2-pentene 
c-2-pentene 
2,2,-dimethylbutane 
cyclopentane 
2,3-dimethylbutane 
2-methylpentane 
3-methylpentane 
2-methyl-1-Pentene 

n-hexane 
methylcyclopentane 
2,4-dimethylpentane 
benzene 
cyclohexane 
2-methylhexane 
2,3-dimethylpentane 
3-methylhexane 
2,2,4-trimethylpentane 
n-heptane 
methylcyclohexane 

2,3,4-trimethylpentane 
toluene 
2-methylheptane 
3-methylheptane 
n-octane 
ethylbenzene 
m&p-Xylenes 
styrene 
o-xylene 
n-nonane 
isopropylbenzene 

n-propylbenzene 
m-ethyltoluene 
p-ethyltoluene 
1,3,5-trimethylbenzene 
o-ethyltoluene 
1,2,4-trimethylbenzene 
n-decane 
1,2,3-trimethylbenzene 
m-diethylbenzene 
p-diethylbenzene 
n-undecane 

 
3.  C8 to C20 VOC samples acquired by glass cartridges filled with Tenax-TA (a polymer of 2,6-diphenyl-p-phenylene oxide) solid adsorbent.  
Samples were analyzed by the thermal desorption/cryogenic preconcentration method followed by high-resolution GC separation and flame 
ionization detection (FID) and/or combined MS/Fourier transform infrared (FTIR) detection for 63 VOCs: 
 

1,2,4,5-tetramethylbenzene 
1(1,1-dimethylethyl)3-5-dimethylbenzene 
(1-methylethyl)benzene 
1-methyl-4-(1-methylethyl)benzene 
1,4-diethylbenzene 
1,2-diethylbenzene 
1,3-diethylbenzene 
(1-methylpropyl)benzene 
1,2,3,4-tetramethylbenzene 
2,3-dihydroindene (indan) 
1,2,3,5-tetramethylbenzene 
1-methyl-2-(1-methylethyl)benzene 
1-methyl-3-(1-methylethyl)benzene 
n-pentylbenzene 
(2-methylpropyl)benzene 
1-methyl-2-ethylbenzene 

1-methyl-3-ethylbenzene 
1-methyl-4-ethylbenzene 
4-methylindan 
2-methylindan 
5-methylindan 
1,3-dimethyl-4-ethylbenzene 
1,2-dimethyl-3-ethylbenzene 
1,3-dimethyl-5-ethylbenzene 
1,2-dimethyl-4-ethylbenzene 
1-methyl-2-n-propylbenzene 
1-methyl-3-n-propylbenzene 
1-methyl-4-n-propylbenzene 
1-methyl-2-n-butylbenzene 
1,4-dimethyl-2-ethylbenzene 
1,3-dimethyl-2-ethylbenzene 
1-ethyl-2-n-propylbenzene 

1,3-di-n-propylbenzene 
2-methylnaphthalene 
1-methylnaphthalene 
hexanal 
heptanal 
octanal 
nonanal 
decanal 
undecanal 
dodecanal 
tridecanal 
tetradecanal 
pentadecanal 
hexadecanal 
octadecanal 
2-furaldehyde 

benzaldehyde 
acetophenone 
2,5-dimethylbenzaldehyde 
ethanone-1(3-
methoxyphenol) 
t-2,4-decadienal 
undecane 
dodecane 
tridecane 
tetradecane 
pentadecane 
hexadecane 
heptadecane 
octadecane 
nonadecane 
eicosane 
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4. Carbonyl samples were acquired by carbonyl samplers containing dinitrophenylhydrazine (DNPH) cartridges, followed by high-
performance liquid chromatography (HPLC) analysis of 14 carbonyls:  

 
formaldehyde 
acetaldehyde 
acetone 
acrolein 

propanal 
crotonal 
methyl ethyl ketone 
methacrolein 

butanal 
pentanal 
glyoxal 
hexanal 

benzaldehyde 
and m-tolualdehyde 

 
5. SVOCs and particulate organics acquired with a sampling train consisting of a Teflon-impregnated glass fiber filter backed up with a 

PUF/XAD-4/PUF sandwich solid adsorbent.  Samples were analyzed by GC/MS for 151 SVOCs and particulate organic compounds: 
 

Naphthalene 
2-menaphthalene 
1-menaphthalene 
2,6+2,7-dimenaphthalene 
1,7+1,3+1,6-dimenaphthalene 
2,3+1,4+1,5-dimenaphthalene 
1,2-dimenaphthalene 
1,8-dimenapthalene 
biphenyl 
2-methylbiphenyl 
3-methylbiphenyl 
4-methylbiphenyl 
trimethylnaphthalene Isomers 
ethyl-Methylnaphthalenes 
acenaphthylene 
acenaphthene 
phenanthrene 
fluorene 
methylfluorenes Isomers 
1-methylfluorene 
methylphenanthrenes Isomers 
2-methylphenanthrene 

4Hcyclopenta(def)phenanthren 
benzo(c)phenanthrene 
perylene 
quinoline 
dibenzo[a,e]pyrene  
dibenzo[a,h]pyrene  
dibenzo[a,i]pyrene  
dibenzo[a,l]pyrene  
dibenz[a,j]acridine 
dibenz[a,h]acridine  
7H-dibenzo[c,g]carbazole  
5-methylchrysene  
dibenz[a,h]anthracene 
7,12-dimethylbenzanthracene 
3-methylcholanthrene 
oxy-PAH 
9-fluorenone 
xanthone 
acenaphthenequinone 
perinaphthenone 
Anthraquinone 
9-anthraldehyde 

Hopanes&Steranes 
18 (H)-22,29,30-trisnorneohopane 
17 (H)-22,29,30-trisnorhopane 
17 (H)-21 (H)-29-norhopane 
17 (H)-21 (H)-hopane 
20R,5 (H),14  (H),17 (H)-cholestane 
20R,5 (H),14 (H),17 (H)-cholestane 
20R&S,5(H),14(H),17(H)-
ergostane 
20R&S,5 (H),14 (H),17 (H)-
sitostane 
 
Carpanes 
8 , 13 -dimethyl-14 -n-
butylpodocarpane 
8 , 13 dimethyl-14 -[3’-methylbutyl] 
podocarpane 
n-alkanoic Acids 
octanoic acid 
nonanoic acid 
decanoic acid 
undecanoic acid 

Alkanes 
n-pentadecane  
n-hexadecane 
n-heptadecane 
n-octadecane  
n-nonadecane  
n-eicosane 
n-heneicosane 
n-docosane 
n-tricosane 
n-tetracosane 
n-pentacosane 
n-hexacosane 
n-heptacosane 
n-octacosane 
farnesane 
norpristane 
norfarnesane 
pristane  
phytane  
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1-methylphenanthrene 
3,6-dimethylphenanthrene 
1,7-dimethylphenanthrene 
anthracene 
9-methylanthracene 
fluoranthene 
pyrene 
methylpyrene/fluoranthenes  
4-methylpyrene 
retene 
benzonaphthothiophene 
benz(a)anthracene 
7-methylbenz[a]anthracene 
chrysene/triphenylene 
benzo(b+j+k)FL 
BeP 
BaP 
7-methylbenzo[a]pyrene 
indeno[123-cd]pyrene 
dibenz(ah+ac)anthracene 
benzo(b)chrysene 
benzo(ghi)perylene 
coronene 

benzanthrone 
benz(a)anthracene-7,12-dione 
1,4-chrysenequinone 
9,10-dihydrobenzo(a)pyren-
7(8H)-one 
nitro-PAH 
1-nitronaphthalene 
2-nitronaphthalene 
methylnitronaphthalenes 
2-nitrobiphenyl 
4-nitrobiphenyl 
5-nitroacenaphthene 
2-nitrofluorene 
9-nitroanthracene 
1-nitropyrene 
4-nitropyrene 
3-nitrofluoranthene 
7-nitrobenz(a)anthracene 
6-nitrochrysene 
6-nitrobenzo(a)pyrene 
1,8-dinitropyrene 
1,6-dinitropyrene 
1,3-dinitropyrene 

dodecanoic acid 
tridecanoic acid 
tetradecanoic acid 
heptadecanoic acid 
octadecanoic acid 
nonadecanoic acid 
eicosanoic acid 
alkanedioic acids 
octadecanedioic acid 
nonadecanedioic acid 
 
Aromatic acids 
benzoic acid 
methylbenzoic acid 
 
 

Saturated 
Cycloalkanes 
tridecylcyclohexane 
tetradecylcyclohexane 
pentadecylcyclohexane 
hexadecylcyclohexane 
heptadecylcyclohexane 
octadecylcyclohexane 
nonadecylcyclohexane 
 
Lower priority 
cycloalkanes 
heptylcyclohexane 
octylcyclohexane 
nonylcyclohexane 
decylcyclohexane 
undecylcyclohexane 
dodecylcyclohexane 
eicosylcyclohexane 
heneicosycyclohexane 
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4.2.2 Receptor Measurement Databases 
 
Air quality monitoring networks in the U.S. are not designed for the application of 
receptor or source models (Demerjian, 2000).  The major emphasis of networks is 
on NAAQS compliance rather than on the broader range of purposes that might 
include air quality forecasting, episode alerts, health studies, atmospheric process 
studies, evaluating source zones of influence, evaluating long-term effectiveness 
of control strategies, and source apportionment modeling (Chow et al. [2002b],  
U.S. EPA [2002]).  
 
At least three levels of monitoring are needed: 

• Level III:  Portable, inexpensive filter and continuous sampling at a large 
number of locations with a minimum investment in site infrastructure and 
maintenance (Baldauf et al., 2001, 2002).  Some accuracy and precision 
are traded for greater spatial coverage.  Temporary, dense networks of this 
type surrounding Level I and Level II sites would establish the zones of 
representation for the permanent monitors. 

• Level II:  Fixed sites with proven technology, similar to compliance sites, 
but with observables and locations intended to serve the multiple purposes 
described above.  Resources directed at urban sites that are no longer 
needed for compliance could be used to establish background, boundary, 
and transport sites.  

• Level I:  Fixed sites with proven, novel technology, similar to those of the 
U.S. EPA’s current supersites program.  These would have 
instrumentation similar to that of Level II and Level III sites to determine 
comparability, as well as detailed size distributions, PM chemistry, and 
precursor gases.   

 
Special studies have been conducted to obtain data at representative receptors 
during periods when PM and/or VOC concentrations have been found to be 
excessive.  Chow and Watson (1989), Lioy et al. (1980), and Watson and Chow 
(1992) summarize several chemically speciated data sets for suspended particles.  
The most complete chemical database to which receptor modeling can be applied 
is the IMPROVE network, which has acquired elemental, ionic, and carbon 
measurements at national parks and wilderness areas since 1987 (Eldred et al., 
1989).  The recently established STN may also be a source of data for receptor 
models in urban areas.  The most comprehensive VOC data, derived from the 
PAMS, takes canister or continuous gas chromatographic measurements at urban 
and suburban sites during the summer. 
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4.2.3 Receptor Model Application Levels 
 
There is no single sampling and analysis design that will permit successful 
receptor modeling in every urban area.  Since measurements can be costly, it is 
useful to examine existing samples and data to assist in forming a conceptual 
model prior to designing a full-scale source apportionment study.  Three 
sequential stages of complexity (U.S. EPA, 1984) can be applied, with each stage 
being progressively more costly, but providing more accurate and precise results 
than the previous stage. 
 
Stage I uses existing data or data that can be readily obtained from analyses of 
existing samples (Gordon et al., 1984).  Source profiles, related to local sources 
that were measured elsewhere, are also used.  This effort confirms the selection of 
contributing sources from the preliminary analysis and eliminates minor 
contributors from further scrutiny.  If the sources contributing to the high 
concentrations of PM or VOC are apparent and sufficiently certain, no further 
work will be needed.  Alternatively, this step serves to reduce the areas to be 
studied in greater detail under an intermediate (Stage II) analysis. 
 
Stage II involves additional chemical analyses on existing samples or the 
acquisition of additional samples from existing sampling sites.  It is intended to 
fill the gaps in model input data that may have been discovered in Stage I, so as to 
reduce uncertainty in results of the Stage I source apportionment.  This may 
require new source and ambient sampling activities.  Local fugitive dust samples 
are acquired, resuspended, and analyzed, at a minimum.  Ground-based vehicle 
exhaust and vegetative burning profiles may also be acquired.  Industrial source 
profiles from other studies can often be adapted.  C2 to C12 hydrocarbons are 
measured for VOC apportionment studies, while elements, ions, and carbon are 
quantified for PM studies.  Where additional sampling is possible, monitoring 
locations and times are selected to bracket suspected contributors. 
 
Stage III analysis is applied only in the most complex airsheds, where the costs of 
emission reduction are high and their effectiveness is uncertain.  A Stage III study 
involves original source testing and measurements beyond the basic PM or VOC 
species.  C10 to C20 hydrocarbons and PM organic species are measured at source 
and receptor. 
 
Many of the receptor modeling techniques described in Table 1 are appropriate 
for all three stages of PM or VOC assessment.  Precision and validity estimates 
define the measurement requirements for the next level of analysis.  These 
estimates can also be used to determine whether the model results at a given stage 
of PM or VOC assessment adequately eliminate the need for more extensive 
assessment. 
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4.3 Meteorological Variables 
 
Concurrent with air quality measurements, meteorological measurements at the 
same or nearby locations are needed to better characterize the meteorological 
regimes affecting the sampled area.  Meteorological measurements (typically at 
10 meters above ground level) such as wind speed, wind direction, temperature, 
relative humidity, dew point, atmospheric pressure, cloud cover, solar radiation, 
mixing height, and precipitation are commonly used in principle component 
analysis (PCA) and factor analysis (FA).  Temperature has been shown to be 
related to the intensity of photochemical reactions (Wolff and Lioy, 1978).  
Absolute humidity is related to the partial pressure of water vapor and can be 
associated with smog precursors.  Inverse relative humidity is theoretically related 
to aerosol water content and is related to aerosol hydroscopic growth factors.  
Poor atmospheric dispersion (horizontal and vertical) is indicated by low wind 
speeds/mixing height and poor ventilation during cold winter periods.  These 
variables are often correlated with atmospheric constituents that can also be used 
in time series and other receptor analyses.  Nearby rawinsonde or radar profiler 
upper-air meteorology data can be used for backward air mass trajectory analysis 
(Draxler and Hess, 1997).  These trajectories indicate the regions over which an 
air mass traveled, during the previous 12 to 120 hours, before arriving at the 
receptors. 
 
4.4 Chemical Transformation Parameters 
 
Appropriate gas and particle processes (Lewis and Stevens [1985], Watson et al. 
[2002b]) can be used for atmospheric “aging” of source profiles.  “Aging” is 
assumed to occur in a confined “box” or “puff” from source to receptor along a 
trajectory path.  Temperature, relative humidity, precursor gas concentrations, and 
particle composition affect changes in chemical abundances for different aging 
times.  Watson et al. (2002a) provide an example of how to simulate changes in 
source profiles from nearby coal-fired power stations and how to use these aged 
profiles in receptor model applications for data acquired from the Mt. Zirkel 
Wilderness Area in northwestern Colorado.  Watson et al. (1994b) also provide an 
example of the aerosol equilibrium model and the non-linearity of inorganic 
aerosol.  These chemical transformation/equilibrium models require concurrent 
air quality and meteorological measurements of PM and their precursor gases 
such as NH3, HNO3, SO2, HCl, VOC, temperature, and relative humidity.  Shorter 
duration sampling of 1 to 6 hours is preferable to minimize the uncertainties of 
model simulation. 
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5 Receptor Model Assumptions, Performance Measures, and 
Validation Procedures 

 
5.1 CMB Model Validation and Application Protocol  
 
CMB software provides outputs and performance measures (Table 4) that can be 
adapted to other receptor models that follow the mass balance equations.  The 
seven-step applications and validation protocol (Watson et al., 1998d) can also be 
applied to these  receptor models (Watson, 2002c).  The steps are: 1) determine 
the applicability of the receptor model; 2) format input files and perform initial 
model runs; 3) evaluate outputs and performance measures; 4) evaluate deviations 
from model assumptions; 5) modify model inputs to remediate problems; 6) 
evaluate the consistency and stability of the model results; and 7) corroborate 
receptor model results with other modeling and analyses.  Elaborations are given 
below. 
 
Table 4.  Chemical mass balance (CMB) receptor model outputs and performance measures. 
 

Output/Statistic/Code Abbreviation Description 
Source Contribution 
Estimate 

SCE Contribution from the source type to the 
profile-normalizing component (usually PM 
mass or sum of PAMS VOCs). 

Standard Error STD ERR The uncertainty of the source contribution 
estimate (SCE), expressed as one standard 
deviation of the most probable SCE.  This is an 
indicator of the precision or certainty of each 
SCE.  The STD ERR is estimated by 
propagating the precisions of the ambient 
measurements and source profiles through the 
effective variance least-squares calculations.  
Its magnitude is a function of the uncertainties 
in the input data and the amount of collinearity 
(i.e., degree of similarity) among source 
profiles.  When the SCE is less than the STD 
ERR, the STD ERR is interpreted as an upper 
limit of the source contribution. 

t-Statistic TSTAT Ratio of the SCE to its STD ERR.  A high 
TSTAT suggests a non-zero SCE. 

R-square R-SQUARE Variance in ambient species concentrations 
explained by the calculated species 
concentrations.  A low R-SQUARE (<0.8) 
indicates that the selected source profiles have 
not accounted for the variance in the selected 
receptor concentrations.  Ranges from 0 to 1.0. 

Percent Mass 
Accounted For 

PERCENT 
MASS  

(% MASS) 

The sum of SCE divided by the PM mass or 
VOC concentration.  A value approaching 
100% is desired. 
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Output/Statistic/Code Abbreviation Description 
Degrees of Freedom DF The number of species minus number of 

sources in fit.  Solutions with larger degrees of 
freedom are typically more stable and robust 
than ones with small degrees of freedom. 

Chi-square CHI 
SQUARE 

CHI SQUARE is the square root of the sum of 
the squares of the RATIO R/U that correspond 
to fitting species divided by the DF. Similar to 
R-SQUARE except that it also considers the 
uncertainties of the calculated species 
concentrations.  A large CHI SQUARE (>4.0) 
means that one or more of the calculated 
species concentrations differ from the 
measured concentrations by several 
uncertainty intervals.  The values for these 
statistics exceed their targets when:  1) 
contributing sources have been omitted from 
the calculation; 2) one or more source profiles 
have been selected which do not represent the 
contributing source types; 3) precisions of 
source profiles or ambient data are 
underestimated; and/or 4) source profiles or 
ambient data are inaccurate.   

Ratio of Calculated to 
Measured Species 

RATIO C/M Ratio of calculated to measured concentrations 
and its uncertainty.  Used to identify species 
that are over- or under-accounted for by the 
model.  The ratios should be near 1.00 if the 
model has accurately explained the measured 
concentrations.  Ratios that deviate from unity 
by more than two uncertainty intervals suggest 
that an incorrect set of profiles is being used to 
explain the measured concentrations. 

Ratio of Residual to its 
Uncertainty 

RATIO R/U Ratio of the signed difference between the 
calculated and measured concentrations (i.e., 
the residual) divided by the uncertainty of that 
residual (i.e., square root of the sum of the 
squares of the uncertainty in the calculated and 
measured concentrations).  Used to identify 
species that are over- or under-accounted for 
by the model.  The RATIO R/U specifies the 
number of uncertainty intervals by which the 
calculated and measured concentrations differ.  
When the absolute value of the RATIO R/U 
exceeds two, the residual is significant.  If it is 
positive, then one or more of the profiles is 
contributing too much to that species.  If it is 
negative, then there is an insufficient 
contribution to that species and a source may 
be missing.   
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5.1.1 Determine the Receptor Model Applicability 
 
The following conditions must be met for a receptor model to be applicable: 

• A sufficient number of PM or VOC receptor samples have been taken with 
accepted sampling methods to fulfill study objectives.  If objectives are to 
determine how to attain ambient air quality standards, samples should 
represent annual average and maximum concentrations for PM2.5 and 
PM10, and correspond to maximum 8-hour average ozone concentrations 
for VOCs.  At least one ambient sample is needed for a CMB run, with the 
other methods in Table 1 requiring at least 50 to 100 ambient samples that 
encompass the variability of source contributions. 

• Samples are amenable to or have been analyzed for a variety of chemical 
species.  As noted above, elements, ions, and carbon are the minimal 
measurements for PM apportionment while the PAMS species listed in 
Table 3 are the minimal requirements for VOC apportionment. 

• Potential source contributors can be identified and grouped into source 
types of distinct chemical compositions with respect to the available 
receptor species.  

• Source profiles are available from the study area or from similar sources 
that represent the source compositions as they would appear at the 
receptors.  Changes in source composition between source and receptor 
must be accommodated in order for the model to be physically 
meaningful.  

 
5.1.2 Format Input Files and Perform Initial Model Runs 
 
Modern receptor modeling software (Henry [2000], Hopke et al. [1983], Paatero 
[1998, 2000], Watson et al. [1997]) allows input data files to be prepared in 
spreadsheet or word processor formats and, with contemporary computer 
memories, there is no practical limit to the number of source profiles, chemical 
species, or individual samples that can be included in a single file.  It is 
convenient, however, to group input data by site or season when data sets are 
large. 
 
The initial model runs should include sensitivity tests (Watson et al., 1994b).  For 
the CMB, this involves evaluating the effects of different combinations of source 
profiles and fitting species.  For eigenvector, edge detection, and PMF models, 
this involves different selections of chemical species and subsets of the ambient 
samples, different selections of the number of factors, different rotation methods, 
and different settings for selectable variables. 
 
In selecting source profiles for inclusion in a CMB or for associating a derived 
factor with a source type, wind direction data can be reviewed to disregard 
downwind sources that have little opportunity to contribute detectable 
concentrations.  Source types that are likely to be dormant, such as wood smoke 
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emissions during hot summer months, can also be eliminated, or they should be 
interpreted as wildfires or prescribed burning that might occur during that period. 
 
Some sources have emissions that are chemically similar or consistent over time – 
that is, although the absolute magnitude of the emissions may vary, the 
abundances of the measured species may be stable.  However, the chemistry of 
some species could be variable if an industrial source alternates its operating 
conditions, feedstock, or fuel.  This variability must be reflected in the 
uncertainties that are assigned to each species abundance in the profile.  These 
concerns about source profile variability are analogous to those faced by the 
dispersion modeler when estimating emission rates or dispersion parameters. 
 
Because receptor models use the analytical results from all included species, mis-
estimation of a single species, even so-called “tracer” species, may not 
appreciably affect the source contribution estimates.  This is especially true if 
these species have been assigned and are inversely weighted by uncertainties, 
which reflect their variability in source emissions.  When these uncertainties are 
adequately estimated, other less variable species abundances provide a larger 
influence on the source contribution estimates.   
 
5.1.3 Evaluate Outputs and Performance Measures 
 
Model outputs and performance measures are described in Table 4.  These are 
examined for different combinations of profiles and species to determine the 
optimal fit to the data.  
 
5.1.4 Evaluate Deviations from Model Assumptions 
 
The performance measures and tests can often indicate when deviations from 
model assumptions may have occurred.  These deviations do not necessarily 
invalidate the receptor model result, but they point out the potential for invalidity.  
This is why a separate step is necessary in the applications and validation protocol 
that evaluates the effects of these deviations from assumptions and determines 
whether these effects can be tolerated. 
 
5.1.5 Modify Model Inputs to Remediate Problems 
 
Receptor modeling results may be compromised by:  1) insufficient receptor 
measurements; 2) insufficient or non-representative source measurements; 3) 
incorrect profile combinations; and 4) source profile collinearity.  Because of the 
complex interactions of all the data in a least squares estimate that occur in some 
CMB solutions (including the PMF solution), statistics or diagnostics may not 
always be adequate to conclusively isolate a problem with model input.  
Remedies for unacceptably high uncertainties due to collinearity include: 

• Measure additional species that are abundant in one source, but not so 
abundant in other sources.   
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• Reduce the uncertainties in the source profiles of the collinear sources.  
This is applicable only if the uncertainties estimated for a composite 
profile are believed to be overestimated, owing to outliers in the 
compositing process.   

• Combine the collinear source profiles into a single profile of a “composite 
source type” that chemically represents the source types identified by the 
estimable linear combinations of inestimable sources.  For example, 
resuspended road dust and windblown soil dust are chemically similar, 
and some modelers include a single term to represent “crustal material” 
instead of the two individual source types.  This aggregate source 
contribution estimate (SCE) might then be partitioned into its components 
by another method (e.g., source modeling, microscopy, or wind trajectory 
analysis). 

 
5.1.6 Evaluate the Consistency and Stability of the Model Results 
 
SCEs should not differ by more than two standard errors, with changes in input 
data (number of samples, number of species, and number of profiles).  Portions of 
the input data may be perturbed randomly or systematically in proportion to their 
uncertainty.  The sensitivity of SCEs to the species can be evaluated by 
eliminating and adding species to the calculation, and determining the change in 
source contributions.  
 
5.1.7 Corroborate Receptor Model Results with Other Modeling and 

Analyses 
 
The receptor analysis is considered valid if four criteria are met: 1) the receptor 
model is determined to be applicable; 2) the performance measures are generally 
within target ranges; 3) there are no significant deviations from model 
assumptions; and 4) the sensitivity tests reveal no unacceptable instabilities or 
inconsistencies.  If uncertainties associated with source contributions are too high 
for decision-making purposes even after taking the steps recommended here, then 
the source compositions being used do not represent the sources in the airshed or 
they are too uncertain. 
 
Source and receptor models may be used in a collaborative manner to perform an 
apportionment, provided that the source model is applicable and the receptor 
model is valid for the particular application.  Spatial and time series distributions 
should be examined to determine that magnitudes of SCEs are consistent with the 
locations and timing expected from those sources. 
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5.2 Model Sensitivity Tests 
 
An example of sensitivity testing for PM10 source apportionment along the Baja 
California, California (CA) border (Chow and Watson, 1997) is given in Table 5.  
Initial tests with different combinations of source profiles were done to determine 
which profiles best explained the data at the Calexico, CA, site.  Several test 
CMB runs were performed for 24-hour samples collected on 12/02/92 with PM10 
mass concentrations of 222.7 ± 11.2 µg/m3.  CMB performance measurements 
were examined to determine how well the ambient concentrations were explained 
by the SCEs.  The results of these initial trials were used as guidance in CMB 
analysis of the entire sample set. 
 
Based on the emission inventory and site survey, primary geological material, 
primary marine aerosol, salt flats or alkaline dust, primary vegetative burning, and 
primary motor vehicle sources were expected to be important contributors in the 
study area.  Ambient measurements showed that high ambient concentrations of 
crustal species (e.g., aluminum, silicon, iron), marine and alkaline species (e.g., 
sodium, chloride), as well as OC, EC, and lead were observed.  PM10 OC 
concentrations were enriched relative to EC in many samples.  To account for this 
“excess” OC, either an agricultural burning profile, a charbroil cooking emission 
profile, or a composite of the two was used.  Secondary ammonium nitrate and 
ammonium sulfate profiles explained NO3

-, SO4
=, and NH4

+, which were 
unaccounted for by the primary emission profiles.  Although soluble sodium was 
used in place of elemental sodium, magnesium was below the lower quantifiable 
limits (LQLs) in many of the source profiles.  PM10 SO4

= was used in place of 
sulfur (S), and chloride (Cl-) was used in place of chlorine (Cl), because the 
soluble fractions of these species are more typical of secondary sulfate and marine 
aerosol, or playa salt sources, than the total elemental fractions. 
 
The test results of the source apportionments at each site are presented by a series 
of trials representing different combinations of source profiles in Table 5.  The 
“best fit” or “default fit” is presented first as a reference.  The SCEs and CMB 
performance measurements are shown for each trial.   
 
Table 5 indicates that primary geological material was the largest contributor, 
followed by primary motor vehicle exhaust and vegetative burning emissions.  
The “best fit” was obtained using the Imperial County, CA, composite road dust 
profile (ICRDC) and the asparagus burning profile (ICABC2).  While the 
Imperial County composite motor vehicle profile (ICRSC) produced a “good fit,” 
the Mexicali, Mexico, motor vehicle profile (IMRSUC) gave better results 
because it accounted for more of the unusually high lead concentration (0.127 ± 
0.0007 µg/m3) in this sample.  Meteorological data on 12/02/92 suggests that this 
sample was indeed impacted by cross-border transport. 
 



 

 

Table 5.  Example of sensitivity tests in chemical mass balance (CMB) receptor modeling (sample from Calexico, CA, on 12/02/94). 
 

PROFILEa BEST FIT TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4 TRIAL 5 TRIAL 6 
ICRDC (Road Dust) 143.6 ± 11.1 138.1 ± 11.1    136.0 ± 11.2 136.3 ± 13.4 
ICBDC (Bulk Soil)   149.7 ± 15.6     
ICBD27 (Salt Flats)    74.5 ± 6.3    
IMRDC2 (Road Dust)     140.8 ± 6.6   
IMRSUC (Vehicle Exhaust) 18.1 ± 8.1       
ICRSBC (Vehicle Exhaust)  23.8 ± 7.4 33.6 ± 8.3 25.9 ± 10.1 27.0 ± 7.4   
ICRSC  (Vehicle Exhaust)      36.6 ± 13.5  
ICRSHC (Vehicle Exhaust)       60.5 ± 12.0 
ICRSIC3 (Vehicle Exhaust)        
ICRSIC2 (Vehicle Exhaust)        
MARIP (Marine Aerosol) 2.1 ± 1.3 2.2 ± 0.5 1.7 ± 2.5 -17.3 ± 3.0 2.0 ± 0.7 1.9 ± 0.6 1.4 ± 0.6 
ICABC2 (Ag Burn) 30.2 ± 12.2 28.5 ± 11.6 17.7 ± 12.3 74.1 ± 20.4 24.0 ± 10.6 25.9 ± 12.2 14.4 ± 9.1 
BAMAJC (Wood Stove)        
IMTSAC (Charbroiling)        
AB75TAL (Ag Burn/Cooking)        
ICPPMC (Power Station)        
IMGPEC (Glass Plant)        
AMSUL (Amm Sulfate) 4.2 ± 1.8 3.6 ± 1.6 2.0 ± 4.3 -15.9 ± 3.0 3.1 ± 1.1 2.6 ± 2.0  
AMNIT (Amm Nitrate) 17.6 ± 1.9 15.9 ± 2.1 14.9 ± 2.5 17.5 ± 2.4 15.7 ± 2.2 13.7 ± 5.0 1.2 ± 8.1 
        
CHI SQUAREb 0.95 1.08 0.69 19.6 1.19 1.03 0.64 
R SQUAREb 0.96 0.96 0.95 0.46 0.97 0.94 0.96 
PERCENT MASSb  96.8 95.2 98.6 71.3 95.4 97.3 96.0 
COLLINEARITYc   ICBDC ICBD27   ICRDC 
   ICABC2 MAR100   ICRSHC 
   ICRSBC AMSUL   ICABC2 
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PROFILEa TRIAL 7 TRIAL 8 TRIAL 9 TRIAL 10 TRIAL 11 TRIAL 12 TRIAL 13 
ICRDC (Road Dust) 142.9 ± 

12.1 
142.0 ± 11.8 144.6 ± 11.3 147.2 ± 12.1 138.6 ± 11.2 137.7 ± 11.4 137.7 ± 11.2 

ICBDC (Bulk Soil)        
ICBD27 (Salt Flats)        
IMRDC2 (Road Dust)        
IMRSUC (Vehicle Exhaust)        
ICRSBC (Vehicle Exhaust)   33.1 ± 11.5 44.4 ± 9.0 24.1 ± 7.6 23.9 ± 7.4 23.5 ± 7.4 
ICRSC (Vehicle Exhaust)        
ICRSHC (Vehicle Exhaust)        
ICRSIC3 (Vehicle Exhaust) 32.5 ± 9.9       
ICRSIC2 (Vehicle Exhaust)  38.2 ± 19.1      
MARIP (Marine Aerosol) 2.4 ± 1.0 1.8 ± 0.8 3.3 ± 0.5 3.7 ± 0.6 2.2 ± 0.5 2.2 ± 0.5 2.1 ± 0.5 
ICABC2 (Ag Burn) 20.6 ± 

11.3 
30.2 ± 14.4    28.2 ± 11.6 28.8 ± 11.7 

BAMAJC (Wood Stove)   17.8 ± 12.0     
IMTSAC (Charbroiling)    -6.8 ± 14.9    
AB75TAL (Ag Burn/Cooking)     29.0 ± 12.4   
ICPPMC (Power Station)      0.26 ± 1.12  
IMGPEC (Glass Plant)       0.81 ± 0.62 
AMSUL (Amm Sulfate) 3.0 ± 1.7 3.4 ± 1.9 3.3 ± 1.8 3.2 ± 1.8 3.6 ± 1.7 3.4 ± 1.8 3.2 ± 1.7 
AMNIT (Amm Nitrate) 14.3 ± 3.1 16.8 ± 3.4 15.7 ± 2.5 15.1 ± 2.8 15.9 ± 2.1 15.9 ± 2.1 16.0 ± 2.1 
        
CHI SQUAREb ICRSIC3 ICRSIC2 ICRSBC ICRSDC  AMSUL AMSUL 
R SQUAREb ICABC2 ICABC2 BAMAJC ICRSBC  AMNIT AMNIT 
PERCENT MASSb AMSUL ICRDC  IMTSAC  ICPPMC IMAR100 
COLLINEARITYc AMNIT      IMGP15C 

a See Chow and Watson (1997) for source profile descriptions. 
b See Table 4 for details. 
c  Similar profiles representing subtypes that need to be combined into a single source type.  Determined by the method of Henry (1992). 
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PM10 Na+ and Cl– concentrations were both present in elevated concentrations 
(1.13 ± 0.07 and 6.5 ± 0.4 µg/m3, respectively).  Because the Cl-/Na+ ratio is 
actually higher than ratios found in seawater, the “pure” unreacted marine profile 
(MARIP) was used to fit these species.  The secondary ammonium nitrate profile 
(AMNIT) was the fourth largest component of PM10, following the contributions 
from primary geological material (143.6 ± 11.1 µg/m3), primary agricultural 
burning (30.2 ± 12.2 µg/m3), and primary motor vehicle emissions (18.1 ± 8.1 
µg/m3). 
 
The asparagus burning profile (ICABC2) was needed to fit OC, which had a 
concentration in this sample 5.6 times greater than that of EC.  In the “best fit” 
case, the performance measurements, shown in Table 5, are excellent with a “CHI 
SQUARE” of 0.95, an “R-SQUARE” of 0.96, and a “PERCENT MASS” of 97%. 
 
The first trial results in Table 5 were similar to the “best fit” solution except that 
an Imperial Valley motor vehicle profile (ICRSBC) was used.  The major 
difference was a poorer fit for lead.  In Trial 2, the Imperial County bulk soil 
profile (ICBDC) was substituted for the Imperial County road dust profile 
(ICRDC).  This solution shows a potential collinearity among  bulk soil 
composite (ICBDC), asparagus burning (ICABC2), and motor vehicle exhaust 
(ICRSBC) profiles, but the source contribution estimates are similar to those of 
the best fit solution. 
 
For Trial 3, the bulk salt flats profile (ICBD27) was used by itself to represent 
fugitive dust contributions.  The “CHI SQUARE” was high (19.6) and the 
“PERCENT MASS” was low (71.3%) in this case.  The substitution of the 
Mexicali composite road dust profile (IMRDC2) for the “best fit” Imperial 
County road dust profile (ICRDC) caused little variation in the source 
contributions (Trial 4).  This was also the case for Trial 5, where the Imperial 
County composite motor vehicle profile (ICRSC) was used, although less of the 
lead was accounted for in this case. 
 
Substitution of the Imperial County motor vehicle profile with profile “ICRSHC” 
in Trial 6 resulted in a potential collinearity among road dust (ICRDC), motor 
vehicle exhaust (ICRSHC), asparagus burning (ICABC2), and ammonium nitrate 
(AMNIT) profiles.  Similar results and higher “CHI SQUAREs” (2.21 and 2.64, 
respectively) were obtained by substituting the motor vehicle profiles with the 
profiles “ICRSIC3” and “ICRSIC2” in Trials 7 and 8, respectively. 
 
Trial 1 combination was modified in Trial 9 by substituting the Bakersfield 
residential wood combustion (i.e., fireplace) profile (BAMAJC) for the asparagus 
burning profile (ICABC2).  The solution is degraded, with a higher “CHI 
SQUARE” (3.54), lower “R-SQUARE” (0.88), and a potential collinearity among 
motor vehicle exhaust (ICRSBC) and residential wood combustion (BAMAJC).  
Substituting the taco restaurant charbroil cooking profile (IMTSAC) for the 
asparagus burning profile (ICABC2) produced a similar result, with potential 
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collinearity among the road dust (ICRDC), motor vehicle exhaust (ICRSBS), and 
charbroil cooking (IMTSAC) profiles in Trial 10. 
 
A composite profile (AB75TA25) constructed by combining 75% of asparagus 
burning (ICABC2) and 25% of charbroil cooking (IMTSCA) is tested in Trial 11.  
The results in this trial are similar to those obtained in Trial 1.  The manure-fueled 
power plant profile (ICPPMC) was added to the Trial 1 combination in Trial 12.  
The SCEs from the manure-fueled power plant (ICPDMC) were not significant 
(0.26±1.12 µg/m3) and a cluster was formed containing the ammonium sulfate 
(AMSUL), ammonium nitrate (AMNIT), and manure-fueled power plant 
(ICPPMC) profiles. 
 
Finally, Trial 13 added the glass plant profile (IMGPEC) to the Trial 1 
combination.  Again, the SCEs from the glass plant (IMGPEC) were small (0.81 ± 
0.62 µg/m3), and this profile was potentially collinear with the ammonium sulfate 
(AMSUL), ammonium nitrate (AMNIT), and marine (MARIP) profiles.  The 
“best fit” source combination provided a robust source apportionment because 
similar solutions were obtained using different combinations of profiles.  The 
results shown in Table 5 for Trials 1, 4, 5, and 11 indicate similarly high 
performance indices and potential profile collinearities. 
 
Therefore, the “best fit” solution shown in Table 5 is realistic, but the ICABC2 
profile must be interpreted as a broader “vegetative burning” source that includes 
several source-types (e.g., agricultural field burning, backyard and trash burning, 
residential wood combustion, and restaurant charbroiler) rather than the asparagus 
field burning from which it was derived.  SCEs calculated from either the 
charbroil cooking or asparagus burning source profile may represent more than 
any single source. 
 
 
6 Summary and Conclusions 
 
Receptor models are complementary to source models in that they infer source 
contributions from ambient concentrations, whereas source models estimate them 
from emissions.  Agreement between the two independent models provides a 
weight of evidence in favor of the validity of both models.  Disagreement points 
to areas where further measurements or more representative modeling is needed. 
 
All multivariate receptor models are based on and are solutions to the CMB 
equations, which express ambient concentrations as a linear sum of source 
contributions and chemical abundances in those contributions.  When there are 
substantial differences in the chemical abundances in the emissions, source 
contributions can be distinguished from each other with appropriate mathematical 
deconvolutions and simplifying assumptions.  A wide variety of chemical and 
physical properties can be measured at source and receptor to distinguish one 
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source type from another, but these measurements are not available from current 
compliance-oriented monitoring networks. 
 
An application and validation protocol should be applied to all receptor model 
applications, including those that derive source profiles.  This protocol includes 
performance measures and sensitivity tests that evaluate the extent to which 
simplifying assumptions are complied with, and how variability in the ambient 
and source measurements adds uncertainty to the source contribution estimates.  
Ultimately, the comparison between receptor and source models provides the 
most important estimate of the validity of both methods. 
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