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Abstract: This chapter focuses first on the mathematical fundamentals of the Gaussian 
distribution that bear on its applicability to air quality modeling.  These fundamental properties 
include: that any weighted sum of Gaussian PDFs is itself a Gaussian PDF; that the Fourier 
transform of a Gaussian is itself a Gaussian; and, that the convolution of a Gaussian with a 
Gaussian results in a Gaussian.  The impact of these fundamentals includes: the connection 
between the Gaussian velocity PDF and the Gaussian shape of the concentration distribution; the 
ability to generate mean plumes from an instantaneous plume and a meander envelope; the ability 
to compute higher-order concentration statistics; and the ability to compute non-linear chemical 
reactions.  Finally, some recent changes to U.S. EPA regulatory Gaussian models are considered.    
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Given the previous three chapters (i.e., 7A by Venkatram and Thé, 2003, and 7B 
and 8A by Yamartino, 2008a-b) devoted to Gaussian plume and puff modeling 
that have appeared in this series, the challenge of this chapter is to avoid 
repetition and cover areas of application interest that have yet to be covered.  
While the emphasis will be on applications, one cannot help but first look at some 
mathematical fundamentals of the Gaussian distribution that bear on its 
applicability to air quality modeling.  The focus will then shift to more specific 
applications of the Gaussian formulation to air pollution problems and finally to 
more recent issues with Gaussian-based regulatory models. 
 
 

© 2010 The EnviroComp Institute and Air & Waste Management Association 113 

http://www.envirocomp.org/
http://www.awma.org/
mailto:rjy@maine.rr.com


114  Air Quality Modeling – Vol. IV 

1 Some Mathematical Properties of the Gaussian and Their 
Practical Implications 

 
While the choice of the Gaussian for analytic air pollution modeling applications 
may seem to have been a somewhat arbitrary choice among suitably peaked and 
appropriately normalized functions, there are additional mathematical properties 
of the Gaussian that have proven to be quite advantageous.  These fundamental 
properties include the facts that: 

• Any weighted sum of Gaussian probability distribution functions (PDFs) 
is itself a Gaussian PDF; 

• The Fourier transform of a Gaussian is itself a Gaussian; and, 
• The convolution of a Gaussian with a Gaussian results in a Gaussian. 

 
It should also be noted that the Gaussian is singled out by the Central Limit 
Theorem as it states that the mean of a large number of independent random 
variables, each with finite mean and variance but possessing arbitrary though 
identical distributional properties, will converge toward being approximately 
normally distributed. 
 
1.1 Gaussian PDFs Connecting Velocity and Spatial Distribution PDFs 
 
The mathematical property that any weighted sum of Gaussian PDFs is itself a 
Gaussian PDF can be expressed as: 
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where N(µ, σ) represents a Normal (i.e., or Gaussian) PDF having a mean of µ 
and a standard deviation of σ, ai are scalar multipliers, and where b is a multiplier 
that provides the proper normalization of the composite PDF.  Its proof can most 
easily be found in Lemons (2002, Chapter 2) or online at: 
http://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables.  
 
This relationship bears on issues such as why Gaussian turbulent velocity 
distributions are consistent with Gaussian concentration profiles for a point source 
and why the Gaussian plume/puff solutions permit miniscule concentrations to 
exist at great distances from a source even just after release.  
 
Consider first the question of why the Gaussian analytic solution to the diffusion 
equation allows diffused mass to exist at infinite distances from the source in 
apparent defiance of any reasonable causal linkage.  If one instead begins with a 
Gaussian turbulent velocity distribution, Lemons (2002, Chapter 7) has shown 
that within the framework of a Langevin stochastic equation for homogeneous 
flow, the turbulent velocity PDF will always remain Gaussian with a mean of zero 
and a variance of σv

2.  This is because for homogeneous turbulence (i.e., no 
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http://en.wikipedia.org/wiki/Normal_distribution
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turbulence gradient in the dimension of interest), the Langevin equation updates 
individual particle turbulent velocities via the relation: 
 

v(n·∆t) = v[(n-1)·∆t] · f  +  σv · (1 - f 2)½ · R(0,1) ,  (2) 
 

where R(0,1) is a random Gaussian number having a mean of zero and a standard 
deviation of unity, f = exp(-∆t/τ), and τ is the Lagrangian time scale.  Equation (1) 
then guarantees that this turbulent velocity PDF will remain normal with constant 
variance, as f 2 + (1 - f 2) just equals one.  As the corresponding particle position, 
y(t), is computed as a sum over these velocities for various time steps multiplied 
by the scalar ∆t, Equation (1) again provides the guarantee that this distribution of 
particle positions will remain normal.  Durbin (1983), Van Dop et al. (1985), and 
others have shown that the resulting variance of this normal PDF of particle 
positions is: 
 

σy
2 = 2 · σv

2 · τ 2 · [ t/τ + exp(-t/τ) - 1] ,   (3) 
 
which for early times (i.e., t << τ ) provides for a linear-in-time growth of σy as   
σy = σv · t, and, for late times (i.e., t >> τ ) a t½ growth as σy = 2½ · σv · (t · τ)½.  This 
late time result is consistent with the K-theory solution with Ky = σv

2 · τ.   
 
Regardless of the initial shape of the turbulent velocity PDF, Pope (2000) has 
shown that the diffusion term in the underlying differential equation governing 
the evolution of the turbulent velocity PDF will make it tend towards normal 
asymptotically.  Further, the assumption of a Gaussian PDF for turbulent 
velocities has been shown by Wilson (2007) to provide a superior fit to Prairie 
Grass data than three other PDF distributions having attenuated (e.g., exp[-
v4/(γ·σv

4)], with γ as a fitting constant) or no (e.g., triangular or cosine PDF) high-
velocity, v, tails extending out to infinity.   
 
Thus, returning to the Gaussian profile function, exp[-y2/(2·σy

2)], any concern we 
might have had over the minute amounts of material at large crosswind distance, 
y, should now be soothed by knowledge that the corresponding Gaussian 
turbulent velocity distribution implies a similarly minute amount of material 
“diffusing” outward at extremely high transverse velocities.  Were one to find a 
well-behaved and superior PDF functional form with such high velocity tails 
“clipped” away from the distribution, then that would provide a basis for 
beginning anew; however, the effort involved would likely not prove to be 
worthwhile, especially now that one understands the relatively benign source of 
this material found at unlikely transverse distances of many, many σy.  In the 
vertical direction, the presence of a gradient in turbulence leads to a skewed 
velocity PDF, particularly in the case of convective conditions (Luhar and Britter, 
1989).  One notes that a skewed Gaussian PDF, with its mean shifted by an 
appropriate area weighted average of updraft and downdraft velocities, can 
generally accommodate such situations.   
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1.2 Fourier Transform of a Gaussian is a Gaussian 
 
The Gaussian distribution is also the only functional form for which its Fourier 
transform is also a Gaussian.  To understand this solution characteristic better, we 
note that the process of taking the Fourier transform of the Gaussian in space (i.e., 
by multiplying the Gaussian profile shape times the quantity exp(-i⋅k⋅x), where i is 
the imaginary number, and integrating over all x from -∞ to +∞) yields a 
Gaussian distribution in k, the conjugate variable to x.  Now k, with its units that 
must be in terms of inverse distance is often referred to as wavenumber, and is 
usually defined in terms of wavelength as k ≡ 2⋅π /λ.  Another curious property of 
this Fourier-transform k-space distribution is that this Gaussian distribution, 
centered at k=0, has a standard deviation inversely proportional to the standard 
deviation of the original x distribution of the Gaussian solution.  More explicitly, 
one finds that: 
 

  σx ⋅ σk  =  ½ .      (4a) 
 
One notes that beginning with any other, non-Gaussian distributions results in a 
different non-Gaussian distribution for the transformed variable, and the 
subsidiary finding for non-Gaussians that: 
   

  σx ⋅ σk  >  ½ .      (4b) 
 
Those familiar with quantum mechanics will recall that this mathematical 
relationship between conjugate variables looks a bit like the Heisenberg 
Uncertainty Principal.  In fact, all we have to do to get there is first recall that at 
the quantum level, a particle’s momentum, p, is simply its wavenumber times the 
reduced Plank constant, ħ ≡ h / (2⋅π), then one obtains the Heisenberg result of:  
 

 σx ⋅ σp  ≥  ħ / 2  , or  ∆x ⋅ ∆p  ≥  ħ / 2      (4c) 
 

in the more conventional physics notation.  Of course, the interpretation of this 
relation in the Heisenberg Uncertainty Principal case is quite different than the 
one we consider here, but the Fourier Transform mathematical basis is the same in 
both cases. 
 
Further analysis of the Gaussian distribution in k-space shows that as the spatial 
distribution grows, energy is fed into the shorter k values (i.e., k · σy < 0.5) and 
depleted from k values for which k · σy > 0.5.  This increase in the long wave 
portion (i.e., λ > 4 · π · σy) indicates that classical diffusion is a smoothing process 
that would tend to wipe out concentration fluctuations with plume growth.  Thus, 
it is not surprising that the Gaussian plume formulation is considered most 
appropriate for time-averaged or ensemble-averaged concentration measures. 
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1.3 Convolution of Gaussians Yields a Gaussian 
 
Another interesting property of the Gaussian is that the convolution of a Gaussian 
with a Gaussian results in a Gaussian.  This property has the important 
consequence that one can now envision splitting the turbulent velocity spectra 
into a short-wave component leading to the physical plume’s spreading and a 
long-wave component that causes the entire plume to meander back and forth.  
While such a division may seem overly-simplistic, it has served as the basis for 
meandering plume models which represent one of the earliest attempts (e.g., 
Gifford, 1959) to model concentration fluctuations.  The convolution process is 
defined mathematically as:   
 

{ }( , ) , ' ( ', ) ( ', )TY y P dy P y y yp mσ φ σ φ
+∞

−∞
≡ ≡ ⋅ − ⋅∫ σ  ,   (5) 

 
where the instantaneous plume is given as: 
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and σp = σp(t) characterizes the width of the instantaneous plume and the 
presumed Gaussian envelope defining the plume’s meander is given as: 
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The result of performing this convolution integration yields a normalized 
Gaussian distribution, Y(y,σT),  
 

 
2

2
1( , )   exp

2 2T
T T

yY y σ
π σ σ

'⎡ ⎤
= ⋅ −⎢ ⎥

⋅ ⋅⎢ ⎥⎣ ⎦
   (7a) 

 
with 
 
    σT

2  =   σp
2 + σm

2 . (7b) 
 
Performing the integral in Equation (5) requires little more than the technique of 
“completing the square”.  Knowing this, it is clear that the process of performing 
the Equation (5) integration yields a multiplicative factor, β, 1
                                                 
1 Obtaining the correct factor requires knowing that 2expM dx x π

+∞

−∞

⎡ ⎤≡ ⋅ − =∫ ⎣ ⎦  ; however, 

this is computed by solving for M2 and then shifting to (r,θ) coordinates. 
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where   
2

  
T

pm

σ
σσπ

β
⋅⋅

=  . (7c) 

 
Implicit in the convolution process is the assumption that the processes of plume 
growth and plume meander are independent of one another.  This independence 
may also be apparent from the quadrature addition rule for sigmas resulting in the 
total plume width, σT.   
 
Those familiar with the Convolution or Faltung Theorem, which states that:  
 

₣({P,φ}) = k · ₣(P) · ₣(φ) .    (8) 
 
where ₣ denotes the Fourier transform process and k is a normalization constant, 
will note that the idea that the convolution of two Gaussians results in a Gaussian 
is obvious given the above Convolution Theorem and the fact that the Fourier 
transform of a Gaussian is a Gaussian. 
 
Thus, beyond the Gaussian representing the simplest K-theory solution to the 
diffusion equation, there are many mathematical conveniences to be had by 
choosing the Gaussian, and also there are clear physically-significant linkages 
(e.g., between observed Gaussian turbulent velocity distributions and the 
Gaussian concentration profiles obtained from the analytic solution for diffusion) 
and statistical properties (e.g., the independence of turbulent components of 
widely different wavelengths) that make the Gaussian the logical distribution of 
choice for puff and plume modeling.   
 
 
2 Gaussian Applications 
 
This section will consider applications involving the Gaussian or the Gaussian 
solution of the diffusion equation, which greatly facilitate obtaining additional 
results. 
 
2.1 Concentration Fluctuations 
 
As mentioned above, the convolution of an instantaneous Gaussian plume having 
a spread σp with a Gaussian meander envelope of spread σm leads to an ensemble-
averaged Gaussian plume of width σT , where σT

2 = σm
2 + σp

2, such that peak-to-
mean centerline concentrations are just σT / σp . 
 
First developed by Gifford (1959) and extended by others, including Hanna 
(1986) and Sawford and Stapountzis (1986), Equation (5) may be integrated and 
generalized to yield higher moments of the concentration distribution as:   
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By analogy with the Equation (5) integration, we note that performing the 
Equation (9a) integration will yield the exponential’s multiplier, βn, 
 
where   
 

  
2

   m p
n

Tn n

π σ σ
β

σ

⋅ ⋅
=

⋅
          (9b) 

 
and where 
 
 σTn

2 = σm
2 + σp

2/n . (9c) 
 
Thus, Y(2) has centerline (i.e., y = 0) value 
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with  
 
 σT2

2 = σm
2 + ½ · σp

2 ; (10b) 
 
whereas, 
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with 
 
 σT1

2 = σm
2 +  σp

2 . (11b) 
 
One may then compute the concentration variance, σC

2, as σC
2 ≡ Y(2) - (Y (1))2 or 

that variance normalized by the mean concentration squared as, 
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    (12) 

 
Of course, this concentration variance only reflects plume fluctuations due to 
meander in y, as σC → 0 as σm → 0, and ignores any variations in the z direction.  
It also ignores concentration fluctuations internal to the narrow plume of width σp; 
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however, now we are beginning to delve into the well-developed specialty of 
concentration fluctuations, which would require a chapter of its own.  The point 
here was to show the flexibility of the Gaussian and the ease to which one can 
obtain meaningful results by invoking the convolution theorem. 
 
2.2 Diffusion into Soils 
 
Deposition rates of air pollutants is predicted by a number of regulatory models 
worldwide, and the results of these surface deposition predictions are then used by 
other disciplines (e.g., soil scientists interested in watershed acidification, 
toxicologists assessing lead concentrations in surface soils), but the applications 
can go much deeper than that -- quite literally. For example, long-lived 
radioactive isotopes, such as 137Cs deposited over many European countries 
during the 1986 Chernobyl incident continue to “diffuse” their way deeper into 
the soils and are readily detectable in core samples (e.g., Rosen et al., 1999; 
Doering et al., 2006; Kaste et al., 2007). 
 
From Chapter 7B, Vol. 2 of Zannetti (2005), we know that the 1-d time-dependent 
solution of the diffusion equation is: 
 

 
21( , )   exp

42
zy
K tK t

φ σ
π

⎡ ⎤
= ⋅ −⎢ ⎥

⋅ ⋅⋅ ⋅ ⋅ ⎢ ⎥⎣ ⎦
 ,   (13)

 
where K is now the diffusivity of the soil, with values typically in the range of 
one cm2/yr or less (i.e., some 12 orders of magnitude smaller than the rather stable 
atmospheric diffusivity of 3 m2/s), and z is assumed positive in the direction 
downward into the soil.  Carslaw and Jaeger (1959) showed that for a constant 
surface deposition rate, Q (g/cm2/yr), to the surface (i.e., z=0) for all t ≥ 0, the 
solution for soil concentration, CS (gm/cm3) as a function of depth and time is: 
 

 
2

( , ) exp
4 2 2s

Q K t z z zC z t erfc
K K t K tπ
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  (14) 

 
where, as before, erfc(x) is the complementary error function, erfc(x) ≡ 1 – erf(x), 
and any diffusion upward into the atmosphere is prohibited (i.e., thus accounting 
for a factor-of-two multiplier) as are all other loss or decay mechanisms.  Under 
such conditions, soil concentrations always increase with total time of deposition.  
 
Now in the more realistic case, deposition occurs up to some cutoff time, t′ = T, 
such that for observation times t > T, only additional diffusion occurs.  
Interestingly, there are several ways to formulate this problem.  The first is to take 
the distribution from Equation (14) at time t = T and allow it to diffuse for times t > 
T via: 
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however, the part of this integral involving the convolution of the erfc with the 
Gaussian appears rather difficult to solve.  Alternatively, one could back up a step 
from Equation (14) and express the problem as the double-integral: 
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Note that in this expression, the √4 constant factors have been left in place to 
show that the overall factor of 2 is needed to account for material at the surface 
not diffusing upward into the air, but being “reflected” back into the soil.  One 
may then solve this problem by reversing the order of the integrations and 
performing the spatial convolution first; however, this approach is equivalent to 
the more direct approach of specifying the diffusion of an emission Q·dt' for all  
t > t' and then integrating over time t' to yield the concentrations at a specific 
depth z for t > T as: 
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whereas, the concentration averaged over a depth interval L≡ z2 - z1, (i.e., from 
depth z1 to depth z2) can then be written as:  
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Drivas et al. (2010) have shown that these last two integrals can be solved by 

changing from variable t′ to s, where 
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s
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where λ stands for either z, z2 or z1.  Their final results for t > T are found to be: 
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Figure 1.  Equation (17) concentrations in soil vs. depth below surface at 
various times for a unit strength deposition, Q=1 g/m2/yr, beginning at t=0 
and having a duration of T = 1 yr.  A unit diffusivity of K=1.0 cm2/yr is also 
assumed. 

 
Evaluation of these expressions, such as the Equation (17) curves displayed 
above, show that radioactive, or other non-reactive, species concentrations can 
show up at some depth, well below the surface, decades after at the deposition at 
the surface has ceased.  This insidious march of hazardous pollutants to deeper 
depths and eventually to groundwater levels has been the driving force behind 
many Superfund projects, including the massive cleanup effort in Hanford, WA, 
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site of many nuclear research activities from the mid-1940s through the late 
1980s.  Thus, one sees that new and relevant applications of purely Gaussian-
based solution formulations continue to be developed and applied.   
 
2.3 Non-Linear Chemistry in Puff Modeling 
 
Photochemical grid models now constitute the major vehicle for addressing ozone 
and secondary particulate impact issues; however, pure grid models suffer from 
the shortcoming that point-source emissions are immediately diluted into a grid-
cell-sized box of dimensions dx·dy·dz.  This initial instantaneous dilution ignores 
near-source, within-plume conversion processes, which can occur very rapidly 
given the high-concentrations of primary pollutants near the source. 
 
One approach to dealing with this problem is to employ a nested-grid approach, 
and this approach is often used in regional modeling with horizontal resolutions 
over source-rich urban or industrial source areas nested down to about 1 km.  
Nevertheless, initial dilution into a box that is one kilometer squared in area 
leaves much early chemistry neglected.  This early chemistry is now tackled by 
using various types plume-in-grid (PiG) modules to facilitate reaction of the 
pollutants close to the source and transport them until the plume’s or puff’s size is 
comparable to the grid resolution, whereupon the material is injected into the grid 
model itself. 
 
Early PiG models involved Gaussian plumes, but it was quickly realized that one 
needed yet higher, sub-plume scale resolution, so there was a pronounced shift 
towards using puffs instead.  Of course, once starts to think in terms of puffs, the 
transition to very small puffs or even Lagrangian particles having some finite 
spatial extent is more a leap of computational intensity than a conceptual one. 
 
To understand the basic challenge of performing non-linear chemistry using puffs, 
we begin with the basic equation for chemical transformations within an N-
species system.  In general, the set of N equations describing the time evolution of 
species mixing ratios2, c(t)i , that undergo 1st, 2nd, and pseudo-3rd order chemical 
reactions can be written as: 
 

jk
i

1

(t)  = R  c (t)  c (t) ,    i, j, k  1,2,3,..., N
t

N Ni
j k

j k j

dc
d = =

⋅ ⋅ =∑ ∑  ,  (19) 

 
where Ri

jk
 is the matrix (i.e., rank-3 tensor) of chemical reaction rates.  Now 

invoking the convention of implied summation over repeated indices (i.e., j and k) 
and integrating over some agree-upon volume of space one has the equation 
system: 
 

                                                 
2 A mass concentration, Ci , relates to the dimensionless mixing ratio, ci via the relation Ci = ρ· ci . 
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(t) (t)  =   = R c (t)  c (t) ,    i, j, k  1,2,3,..., N
t t

i i
j k

V V

dm dc
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where ρ is the local air density.  In the case of grid modeling, the volume, V, to be 
integrated over is simply the volume of the current cell being considered, and 
within-cell mixing ratios and masses are related simply by, mi = ρ ·ci ·V.  
However, in the case of dealing with puffs or particles, we have the additional 
complications that concentrations of each species at any single point can involve 
the summation over many nearby puffs and that the volumes to be associated with 
each particle or puff will definitely overlap those volumes associated with other 
particles or puffs. 
 
Thus, even the definition of species mixing ratios ci, cj, and ck at any point involve 
sums over all puffs that could possibly contribute to species concentrations at that 
point.  Because any product of sums can always be re-expressed of a sum of 
products, one sees that the computation of species concentrations involves the 
spatially-integrated product of the spatial distributions associated with some puff 
p and any other puff m. Choice of the indices p and m was done partly to avoid 
confusion with the already used pollutant species indices i, j, and k but also to 
facilitate bridging back to Equation (5) where our interest was in integrating in 
one spatial dimension over two Gaussian distributions, displaced from one 
another by a distance y. Since the three-dimensional Gaussian is nothing more 
than the product of three one-dimensional Gaussians, the convolution theorem 
immediately comes to our rescue and enables us to define the integral 
concentration overlap of puff p with that of puff m as:  
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(21) 

 
where qjp is the mass of species j assigned to puff p, qkm is the species k mass of 
puff m; (x, y, z) specify the puff center separations; and the puff p-m overlap-
sigma quantities σTx , σTy , and σTz are given as: 
 

σ2
Tx = σ2

px + σ2
mx , σ2

Ty = σ2
py + σ2

my , and  σ2
Tz = σ2

pz + σ2
mz , respectively. 

 
In practice, the computational tedium of computing many thousands of Gaussians 
often leads developers to use simpler functions, such as the Epanechnikov kernel 
estimator (Epanechnikov, 1969) rather than the Gaussian.  Like the Gaussian, 
such a 3-d kernel defines a spatially-diffuse concentration as: 
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  (22a) 
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where each “bandwidth” λp can be related to the corresponding σp, (e.g., the 
relation λp = 2.214 · σp) and the function f(φ) is defined as: 
   

 
23 (1 ) 1

4( )
0 1

f
φ φ

φ
φ

⎧ − ≤⎪= ⎨
⎪ >⎩

, where, for example, φ = |x'/λ|. (22b) 

 
Another advantage of such a finite function which cuts off sharply for |φ| > 1 (e.g., 
for |x'/λpx| > 1) is that one has a very clear search window to look for neighboring 
puffs where the overlap integral is non-zero.  
 
Once all the dmi/dt quantities are determined, there is the bookkeeping issue of 
how to assign the mass change dmi in species i back to the most-appropriate puffs 
in some proportionate way and without creating nasty problems, such as negative 
species mass being assigned to any puff/particle.  This mass reassignment issue is 
discussed in Monforti et al. (2006).     
 
 
3 Gaussian Regulatory Model Improvements 
 
This section will consider recent improvements to U.S. EPA regulatory models 
that involve changes to the basic way in which the Gaussian solution is applied.  
Interestingly, some of these changes generally do not involve abandoning the 
Gaussian, but rather using more of them. 
 
Our first example involves the case of dispersion under convective conditions.  
AERMOD (U.S. EPA, 2004 and Cimorelli et al., 2005) now treats such 
convective dispersion by employing two Gaussians: one whose centerline is 
advected upward by an updraft velocity and another whose centerline is advected 
downward by a downdraft velocity.  These two Gaussians are weighted in 
proportion to the fractional area of updraft and downdraft zones, respectively.  
This formulation, developed by Weil and Brower (1984) and Weil (1985), results 
in asymmetric vertical dispersion that is in better agreement with the Willis and 
Deardorff (1978) water tank data than that which a single Gaussian could provide, 
but is completely consistent with the Gaussian approach. 
 
A similar example that appears in AERMOD involves the treatment of flow over 
complex terrain, in that the final plume is a weighted sum of a plume, which 
follows terrain and one that does not.   
 
A final AERMOD example involves the treatment of low wind speed conditions.  
As mentioned by Venkatram and Thé, (2003 - in Chapter 7A,Vol. 1), this issue of 
providing a proper azimuthal distribution as the mean wind goes is zero is bridged 
by using the weighted sum of a Gaussian distribution in y and a uniform 
azimuthal distribution and is given as: 
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and Ue provides the estimate of the total dilutionary wind.   
 
Unfortunately, even this adjustment does not solve the problem of model over-
prediction at very low wind speeds.  Paine et al. (2010) reported over-predictions 
by a factor of 2-3 found in several low wind tracer studies, and have found it 
necessary to use a reformulated expression for the friction velocity, u*, within the 
AERMET preprocessor to provide higher u* at low mean winds, which in turn 
results in higher levels of vertical and horizontal turbulence and dilutionary wind 
Ue.  Their analysis also suggested the need for imposing a minimum value of 0.4 
m/s on σv. 
 
For assessments involving mesoscale and longer-range transport (i.e., > 50 km.), 
CALMET (Scire et al., 1998) and CALPUFF (Scire et al., 2000; Scire, 2008) 
continues to be EPA’s recommended Guideline modeling system; however, the 
more routine availability of high-resolution prognostic meteorological modeling 
has called into question some of CALMET’s technical options (U.S. EPA et al, 
2009) and the wisdom, in general, of filtering self-consistent, prognostic 
meteorological fields through a diagnostic wind field model with some historical 
shortcomings (e.g., divergence minimization ignoring air density, formulation in 
terrain-subtracted coordinates).  As an alternative, more direct interface routines 
between the MM-5 and WRF models and CALPUFF are now being developed 
(Scire, 2008; Emery et al., 2009).  Such more direct interfacing of high-quality 
meteorological fields, should improve the performance of CALPUFF in 
mesoscale and long-range tracer study comparisons (e.g., CAPTEX, ETEX) 
versus its performance using CALMET fields (Anderson and Brode, 2010).   
 
It should also be noted that the wider and more routine availability of high-quality 
prognostic modeling results incorporating meteorological data assimilation, leads 
one to question the traditional regulatory dividing line of 50 km between using 
plume models and puff or particle models.  A typical near-surface wind of 5 m/s 
only carries pollutants 18 km in one hour, and there are often terrain and 
intervening surface/land-use variations that challenge the assumptions of straight-
line flows and uniform turbulence conditions.  Low wind speeds represent yet 
another challenge to traditional plume modeling.  Even if one relinquishes the 
need for specific hour-by-hour predictive power and requires only information 
about the highest concentration hours within a year or multi-year period, the 
presence of an intervening land-use shift between source and receptor (e.g., a 
large lake) could lead to systematic over-/under-predictions.   
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The CALPUFF model was designed to provide concentration predictions identical 
to the ISC-3 short-term dispersion model under the assumption of steady-state, 
uniform flow conditions, and could easily be modified to incorporate the 
dispersion modeling differences brought about by the transition from ISC to 
AERMOD (e.g., more realistic treatment of convective conditions), as anything 
that can be done with plumes can also be done with puffs or slugs (i.e., time-
integrated puffs).  Puff and particle models also incorporate along-wind 
dispersion, so that low or calm winds are not problematic.   
 
The traditional objections to switching to puff or particle models, such as 
computational cost or requisite data base complexity become less relevant each 
year; however, there are major obstacles that science cannot circumvent, and 
these appear to arise (i.e., from a modelers perspective) from legal considerarions 
(e.g., precedence, the standing of existing air quality permits, resolution of 
discrepancies).  These same non-scientific considerations also appear to have 
inhibited regulatory recognition and utilization of uncertainty estimates that arise 
from predictions of higher concentration moments (i.e., C2 in addition to C -- as 
discussed in Section 2.1 and indirectly in Section 2.3).  Regulators accepted 
photochemical grid modeling, not because it was a clever method but because it 
represented the only way to predict ozone and some secondary aerosol 
concentrations.  A switch in the regulatory approach can only be anticipated when 
the current approach can be shown to be severely deficient on model performance 
grounds as opposed to being deficient merely on scientific principle grounds.       
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