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a b s t r a c t

This paper presents the Lagrangian particle model LAPMOD for modeling time-variable emissions in
atmosphere of inert and radioactive gases and aerosols. LAPMOD is fully interfaced with the meteoro-
logical model CALMET (Scire et al., 1999a), part of the US-EPA recommended CALPUFF modeling system
(EPA, 2017), and can also use the meteorological input files produced with the AERMET meteorological
processor of US-EPA recommended model AERMOD (EPA, 2004).

The paper outlines the theory on which LAPMOD is based and provides the results of the evaluation of
LAPMOD against the Kincaid SF6 and SO2 classical field studies and tracer experiments. The performance
of LAPMOD is successfully evaluated with the Model Evaluation Kit (Olesen, 2005) and compared with
that of other air quality models.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decades, Lagrangian particle dispersion models
(LPDMs) have become more appealing as modeling tools to simu-
late the atmospheric dispersion of pollutants thanks to their ability
to reproduce the stochastic nature of turbulence (e.g. Thomson and
Wilson, 2012). Lagrangian particle models simulate pollutant re-
leases by following a number of independent computational par-
ticles e each one representing a fraction of the released mass - in a
sequence of finite time intervals. The motion of each particle is
driven by a time-varying velocity field, which can be divided into an
average component, the average wind, plus a fluctuation velocity
describing the effects of atmospheric turbulence and those wind
variations not included in the mean component. The fluctuation
asio).
velocity can be described by a non-linear form of the Langevin
stochastic differential equation.

While particles in Lagrangian particle models are generally
considered computational markers of the atmospheric fluid that
allow the reconstruction of the concentration field of the pollutant
at later times, the description of released matter in terms of par-
ticles allows easy incorporation of some physical processes the
pollutant may undergo, including radioactive decay and deposition.
Since particles can represent the pollutants as gas or aerosol,
deposition and gravitational settling can also be taken into account.

The advantages of Lagrangian particle models with respect to
Eulerianmodels and analytical models are described for example in
Zannetti (1990).

LPDMs are widely used tools in the field of atmospheric pollu-
tion studies. For example, they are used to estimate the emission
rates of specific sources starting from monitored concentrations
(e.g. Park et al., 2016) and to simulate atmospheric dispersion over



R. Bellasio et al. / Atmospheric Environment 163 (2017) 87e9888
complex terrain (e.g. Rakesh et al., 2015). LPDMs can be coupled
with CFD in a relatively simple way, therefore they are used to
evaluate the dispersion of pollutants within complex urban envi-
ronments due to accidental hazardous releases (e.g. Hanna et al.,
2011; Armand et al., 2014). They can be used on different spatial
scales to simulate different kinds of releases (e.g. Bellasio et al.,
2012; Brioude et al., 2013; Hegarty et al., 2013).

Lagrangian particle models often require a large number of
particles to obtain statistically sound results and short time steps to
integrate the equation of motion of the particles. However, the
computational resources commonly available nowadays make
them suitable for implementations oriented both to real-time ap-
plications, and to simulate long periods.

This paper introduces the Lagrangian particle model LAPMOD.
The development of LAPMOD began more than 20 years ago.

During the years the model had different names, but its core
remained the same. The development started from the model
developed by Zannetti (1990) and one of the first modified version
was the model described by Bianconi et al. (1999). After some years
a photochemical module was inserted in the model, as described in
Zanini et al. (2002), but this research direction was abandoned and
the model was re-transformed into a tool for inert pollutants. With
the aim to speed up the simulations, the algorithm for calculating
the concentrations starting from particle positions and masses was
substituted from the brute-force counting method to the use of
kernels (Vitali et al., 2006). During the last decade the model has
been further tested and modified, for example adding the
description of aerosols and their granulometric distributions, the
dry and wet deposition algorithms, the radioactive decay of iso-
topes (both in air and in deposited material), two numerical plume
rise methods and the algorithm for managing odor pollution, as
described in the following paragraphs. Moreover, a source-
attribution algorithm has been recently added to the model
(Bonafe' et al., 2015). The model has been adopted by some Italian
Agencies, as for example the Regional Agency for the Environment
of Region Emilia Romagna (ARPA-ER), and the National Institute for
Environmental Protection and Research (ISPRA).

LAPMOD is fully coupled to the diagnostic meteorological model
CALMET (Scire et al., 1999a), preprocessor of the US-EPA preferred/
recommended dispersion model CALPUFF (Scire et al., 1999b; EPA,
2017). LAPMOD, through its preprocessor LAPMET, can also use as
an alternative the meteorological input files of the US-EPA
preferred dispersion model AERMOD (EPA, 2004). LAPMOD can
describe several types of sources: point, linear, volume, and area
(circles, rectangles and irregular polygons) that can arbitrarily vary
with time. Point sources may also be buoyant due to thermal or
mechanical effects, and the stack-tip downwash and partial plume
penetration effects are included. LAPMOD also reduces the run time
by making use of a kernel smoother for the calculation of the
concentration field.

The paper first describes the theory behind the model and its
design. Then the results of its evaluation against the classical Kin-
caid SF6 and SO2 datasets (Hanna and Paine,1989; Olesen, 2005) are
presented, including a comparison with the performance of other
widely used models.
2. Model formulation

This section contains a detailed description of the LAPMOD
formulation. The first part illustrates how each particle is moved
according to a mean wind component and a random turbulent
velocity fluctuation. Then the coefficients needed to determine the
turbulent fluctuations along the horizontal and vertical directions
and under different stability conditions are presented.
2.1. Particles movement

According to the Lagrangian approach, the description of the
atmospheric dispersion of a pollutant is obtained by computing a
number of possible different trajectories that air masses at the same
time in the same positionmay follow due to the stochastic nature of
turbulence. The mass of the emitted species is then fractioned
among some particles acting as markers. These portions of atmo-
spheric fluids are macroscopic since they include a large number of
molecules, but they are small enough to be considered as points.
The movement of the particles is due to the effect of the meanwind
field and the turbulent diffusion that is supposed to act on particles
through an additional stochastic wind velocity component.

The random walk induced by turbulence is assumed to be first-
order Markovian. Given the position of a particle at time t (s), its
position at the time tþDt (s) is given by:

xiðt þ DtÞ ¼ xiðtÞ þ Dt
�
ui þ u;i

�

where i ¼ 1,2,3 indicates respectively the x, y and z direction, ui is
the mean wind component along the i-th direction (m s�1) and ui'
represents the turbulent velocity fluctuation along the same i-th
direction (m s�1). The time evolution of the velocity fluctuation is
described in the most general terms by the non-linear Langevin
equation introduced by Thomson (1987):

du0i ¼ ai
�
x;u0i; t

�
dt þ bij

�
x;u0i; t

�
dxjðtÞ

where ai (m s�2) and bij (m s�1.5) are functions of space, velocity and
time, and dxj(t) (s�0.5) is a random increment of a Wiener process
with independent components, each with zero mean and variance
equal to dt.

Both ai and bij coefficients are linked to the structure of turbu-
lence through functional relations with the meteorological vari-
ables. Many schemes have been investigated in literature for
describing these deterministic coefficients. The ai acceleration co-
efficients are implemented in LAPMOD as a quadratic function of
the velocity (Franzese et al., 1999):

ai ¼ au;2i þ bu;i þ g

The a (m�1), b (s�1) and g (m s�2) coefficients vary depending on
the turbulence conditions that are discriminated according to the
ratio L/zi, where L is the Monin-Obukhov length (m) and zi is the
mixing layer height (m).

2.2. Coefficients for vertical component under unstable conditions

The coefficients a, b and g for the vertical component under
unstable conditions (L/zi <�1) are those proposed by Franzese et al.
(1999):

aðzÞ ¼
1
3GW4 � 1

2
W3
W2

ðGW3 � C0εÞ �W2GW2

W4 �W2
3

W2
�W2

2

bðzÞ ¼ GW3 � 2aW3 � C0ε
2W2

gðzÞ ¼ GW2 � aW2

where C0 is the adimensional Kolmogorov constant (the suggested
value is 3 according to Du (1997), but this value can be changed
when running LAPMOD), ε is the eddy dissipation rate (m2 s�3), Wn
indicates the n-th order moment of the distribution of the vertical
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fluctuation velocities w(z) and GWn is the corresponding gradient
along the vertical. The above equations show that the acceleration
is completely defined if the first four moments of the velocity are
known.

Following Franzese et al. (1999), these analytical expressions for
the second and the third moments are used:

W2

w2
*

¼ a1 þ a2

�
z
zi

�2
3
�
1� z

zi

�4
3

W3

w3
*

¼ a3

�
z
zi

��
1� z

zi

�2

where zi is the convective boundary layer height (m), w* is the
convective scale velocity (m s�1), and the three adimensional co-
efficients are a1 ¼ 0.05, a2 ¼ 1.7 and a3 ¼ 1.1.

The fourth moment is calculated as (Hibberd and Sawford,
1994):

W4 ¼ 3:5W2
2

and the eddy dissipation rate is given by (Luhar and Britter,
1989; Weil, 1990):

ε ¼ 0:4
w3

*

zi

In LAPMOD the derivatives that appear in the equations for a, b
and g are obtained by analytically deriving the expressions for the
moments.

The motion is uncorrelated along the three components, i.e.
bij ¼ 0 for i s j. The b coefficient for the vertical component for
unstable conditions is given by:

b ¼
ffiffiffiffiffiffiffiffi
C0ε

p

2.3. Coefficients for vertical component under neutral and stable
conditions

For neutral and stable conditions (L/zi��1), the coefficients a, b
and g for the vertical component of the a coefficient are set to
match the equation proposed first by Wilson et al. (1983) for
inhomogeneous Gaussian turbulence:

aðzÞ ¼ GW2
2

2W2
2

¼ GW2

W2

b ¼ � 1
TL

gðzÞ ¼ W2GW2

where TL is the Lagrangian time scale (s).

2.4. Coefficients for horizontal components

The ai coefficient for the horizontal component, for any stability
condition, is given by:

ai ¼ �u0i
TLi

For neutral and stable conditions (L/zi � �1) and for the
horizontal component under any stability the b coefficient is given
by:

b ¼ W2

ffiffiffiffiffi
2
TL

s

2.5. Lagrangian time scales and velocity fluctuations

Lagrangian time scales and velocity fluctuations depend on the
stability conditions. In LAPMOD they are calculated as described by
Hanna et al. (1982), except where indicated in the following.

Under unstable conditions (Hurley and Physik, 1993):

TLU ¼ TLV ¼ 0:15
zi
sv

TLw ¼ 0:6
zi
w*

and sv (m s�1) is given by:

sv ¼ u*
�
12� 0:5

zi
L

�1
3

Under neutral conditions:

su ¼ 2u* exp
�
� 3 f z

u*

�

sv ¼ sw ¼ 1:3u* exp
�
� 2 f z

u*

�

TLU ¼ TLV ¼ TLW ¼ 0:5 z

sw

�
1þ 15 f z

u*

�

where f (s�1) is the Coriolis parameter, z is the height above ground
(m) and u* is the friction velocity (m s�1).

Under stable conditions:

su ¼ 2u*

�
1� z

zi

�

sv ¼ sw ¼ 1:3u*

�
1� z

zi

�

TLU ¼ 0:15
zi
su

ffiffiffiffi
z
zi

r

TLV ¼ 0:07
zi
sv

ffiffiffiffi
z
zi

r

TLW ¼ 0:10
zi
sw

�
z
zi

�0:8

Above the mixing height, the velocity fluctuations along the
three components follow the Langevin equation for homogeneous
conditions and turbulence is strongly attenuated.

A particle can get above the boundary layer due to its motion or
because the boundary layer drops. Whenever a particle gets above
the boundary layer the vertical component of its fluctuation ve-
locity is set to 0. Then the particle moves according to the Langevin
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equation for homogeneous conditions with the coefficients for
horizontal components calculated with TL ¼ 1000 s and
s ¼ 0.01 m s�1.

The Langevin equation for each component is integrated for-
ward in time with a constant time step equal to 0.15 s (Wilson and
Zhuang, 1989), except for convective conditions where a variable
time step is applied and calculated according to Thomson (1987).

2.6. Sources, plume rise, and deposition

LAPMOD can simulate emission scenarios with multiple point,
line, area, and volume sources with arbitrarily-varying (down to
1 s) emission rates of different pollutants.

Pollutants can be inert or radioactive-decaying, in the form of
gases or aerosols. Areosol size distribution is log-normal, with
AMAD (Aerodynamic Mean Aerosol Diameter) and GSD (Geomet-
rical Standard Deviation) that depend on the substance. The log
normal continuous distribution is represented as a discrete distri-
bution in the model and for each aerosol particle emitted there are
several computational particles generated, each of them with a
diameter assigned with probability consistent with the size
distribution.

Point sources can be buoyant, and plume rise can be simulated
numerically using Webster and Thomson (2002) or Janicke and
Janicke (2001) algorithms. The two algorithms are similar, but the
second one contains equations of conservation of water mass and is
therefore more suitable for wet plumes, such as those emitted by
scrubbers in desulfuration processes (Presotto et al., 2005). The
equations of the plume rise models are numerically integrated by a
fourth-order RungeeKutta method implemented within LAPMOD.
The plume-induced turbulence is described as in Webster and
Thomson (2002). LAPMOD also includes an algorithm for the
stack tip downwash and can take into account the partial plume
mixing height penetration as described by Manins (1979).

In LAPMOD, the particles affected by the plume rise follow the
trajectory of a bending plume until the plume loses its buoyancy.
Afterwards, these particles move like any other non-buoyant par-
ticle, driven by the local average wind velocity plus the turbulent
components simulated by the Langevin equation described above.

LAPMOD includes algorithms for dry deposition of gases, and
dry and wet depositions for aerosols. Wet deposition of gases is not
implemented yet, however it is generally neglected because most
gases are relatively insoluble (e.g. Webster and Thomson, 2014).
The dry deposition is calculated by the resistance analogy method
(e.g. Seinfeld and Pandis, 1998), while the settling velocity of
aerosols is calculated as described by Zhang et al. (2001). The wet
deposition of aerosols is calculated as described by Baklanov and
Sorensen (2001). The mass of each computational particle may
decrease as a consequence of deposition and radioactive decay.

3. Calculation of concentration

Historically, the calculation of concentration at a receptor in
Lagrangian particle models has been made by the box counting
technique, i.e. by counting the number of particles within a “box”
that is centered on the receptor and then dividing the total mass of
the particles by the box volume. Clearly, this choice requires a large
number of particles to obtain an acceptable resolution in the
computed concentration field, as well as a dimension of the
counting boxes that is large enough to include a statistically sig-
nificant number of particles so that the computed field is contin-
uous, but not too large so that the concentration field is over
smoothed. This large size of the counting boxes also reduces the
vertical resolution of the computed concentration field. The con-
centration field computed with the box counting technique is thus
grid-dependent. Even with today calculation resources, the calcu-
lation of concentrations with the counting method may be time-
consuming.

A different numeric technique for computing concentrations in
a Lagrangian particle model is the kernel density estimator, which
permits a reduction in the number of particles and a computation
of a completely grid-free and continuous concentration field in
each point of the domain. First examples of kernel application in
Lagrangian dispersion models are in Lorimer (1986) and Lorimer
and Ross (1986). The kernel method generally uses the particles'
position to estimate the so-called bandwidths that act as smooth-
ing parameters.

LAPMOD contains several algorithms for calculating the con-
centrations, for example the parabolic kernel (Uliasz, 1994).

A general formulation for calculating instantaneous concentra-
tions with a kernel is (Uliasz, 1994):

CIST ðx; y; zÞ ¼
XN
i¼1

Qi

hxihyihzi
K
�
rx; ry; rz

�

where:

� N is the number of computational particles that contribute to
concentration in the point of interest,

� Qi is the mass associated to the i-th computational particle,
� hxi, hyi and hzi are the bandwidths of i-th particle in the three
directions. The bandwidths define the degree of smoothing of
the concentration field and depend on particle age.

For the parabolic kernel the K function is defined as:

K
�
rx; ry; rz

� ¼ 15
8p

�
1� r2

�
I

where I ¼ 1 if r2 ¼ rx2þry2þrz2 < 1, and I ¼ 0 otherwise.
The bandwidths along x and y directions (hx ¼ hy) are computed

as in Stohl et al. (1998):

hx ¼ Aþ Bt þ C
ffiffi
t

p

where t is the particle age (s) and A, B and C are coefficients. The
bandwidth along z (hz) is computedwith the same expression, with
B ¼ 0. It is observed that when the bandwiths are proportional to
the age of the particle LAPMOD behaves as a hybrid particle-puff
model (Zannetti, 1990).

A discussion about the performance of different kernel density
estimators can be found in Vitali et al. (2006).

Another approach consists in estimating the bandwidth via
their physical interpretation. For example, Yamada et al. (1987)
used a Gaussian kernel estimator where the bandwidths are
determined as the time integration of the velocity variances
encountered by the particle during its life. This kind of kernel
smoother (e.g., Hastie et al., 2013) is a statistical non-parametric
method that allows for making an estimate in a query point (a re-
ceptor, in our case) of a multidimensional function (the concen-
tration field) through the knowledge of a limited number of
observations (the concentration associated to themass represented
by the particle). By using only local observations the resulting es-
timate is smooth. Localization is obtained by considering only a
limited number of observations that are close in space and are
weighted based on their distance from the query point. Following
this approach, in LAPMOD we assume that the mass attributed to
each particle is distributed in space into an ellipsoid that has a
time-growing size whose increments depend on the local diffusion
properties of the atmosphere that are experienced by the particle
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along its motion. The incremental dimensions are computed at
each time step as suggested by Hanna et al. (1982):

(
s2x ¼ s2y ¼ s2z ¼ ε t3 age � 104s
sx ¼ sy ¼ sz ¼ 100 t age>104s

ðnote that sz is limited to sz � 0:3 ziÞ:
We then define the concentration associated to the p-th particle

as:

cp ¼ mp
4
3psxpsypszp

and the kernel smoothing function associated to the particle in
the query point (x0,y0,z0) as:
Kpðx0; y0; z0Þ ¼

8><
>:

�
1�

		xp � x0
		

asxp

��
1�

			yp � y0
			

asyp

��
1�

		zp � z0
		

aszp

�
where

		wp �w0
		 � aswp cw2fx; y; zg

0 elsewhere
a is the “search radius” in s units. Where the particles' density is
higher, a must be smaller to guarantee appropriate localization.
Since particles released from a source separate each other with
time, we assume in LAPMOD that the a parameters for each particle
depend from particle age, up to a limit value.

The general expression for a is thus:

aðtÞ ¼

8><
>:

�
1þ b

ageðtÞp
AGE

�
if t � AGE

amax otherwise

The selected default values for LAPMOD are AGE ¼ 1200 s and
b ¼ 1 (i.e. aMAX ¼ 2).

The concentration in (x0,y0,z0) is then:

Cðx0; y0; z0Þ ¼
X
p

cpKpðx0; y0; z0Þ
Fig. 1. LAPMOD model system structure.
4. LAPMOD modeling system structure

The LAPMOD modeling system structure is schematically rep-
resented in Fig. 1. The meteorological input of LAPMOD consists of
three dimensional fields of wind and temperature, and two
dimensional fields of atmospheric turbulence parameters (Monin
Obukhov length, friction velocity, convective scale velocity, mixing
height). All these input variables are read directly from the CALMET
(Scire et al., 1999a) output file. CALMET is the diagnostic meteo-
rological model that prepares input data for the CALPUFF disper-
sion model (Scire et al., 1999b), which is on the list of the US-EPA
preferred/recommended models. The geophysical variables
needed by LAPMOD (e.g., the roughness length or the land use
category needed for estimating deposition fluxes) are also read
from the CALMET output file.
The LAPMOD meteorological input file can also be prepared
with the LAPMET processor which reads the surface and profile
meteorological files of AERMOD (EPA, 2004), also on the list of the
US-EPA preferred/recommended models, and creates an output file
formatted as the CALMET output file. The wind and temperature
fields prepared by LAPMET are horizontally homogeneous but vary
along the vertical direction. The use of the LAPMET processor is
useful for simple applications, when the meteorological fields and
stations needed by CALMET are not available, and for validation
purposes since the meteorological input file of AERMOD is often
provided.

The LAPEMI processor produces the LAPMOD emission file with
1-h time resolution starting from the annual average emission of
each single source and using three temporal modulation profiles:
an annual profile composed by 12 numbers (one for each month), a
weekly profile composed by seven numbers (one for each day), and
a daily profile composed by 24 numbers (one for each hour).
Different sources can share the same profiles if they have similar
time variations. LAPEMI is useful for processing emissions for
permit applications; however, LAPMOD is capable of managing the
emission variations up to the time resolution of 1 s. Time resolu-
tions of minutes or less are typical in accidental releases and in odor
modeling.

LAPMOD can be used in two different ways when simulating
odor emissions: 1) by calculating the 1-h average concentrations
and then applying a peak-to-mean ratio (PMR) for estimating av-
erages over shorter time periods (e.g. 1 or 5 min); or 2) storing for
each hour the highest concentration value estimated during each
short sampling (i.e. few minutes) carried out for calculating the 1-h
average. The peak-to-mean ratio for calculating peak odor con-
centrations from the 1-h averages is often a constant determined
with the Smith (1973) relation (e.g., a value of 2.3). The adoption of
this constant is a simplification because the peak concentration
varies with atmospheric stability and is not always proportional to
the 1-h average concentration with the same constant factor.
LAPMOD contains a routine for calculating peak concentrations as
described by Mylne (1990, 1992). The same approach is also
implemented in the AODM model (Schauberger et al., 2000).

LAPOST is the post processor which reads the LAPMOD binary
output file, containing for example the hourly concentration results



R. Bellasio et al. / Atmospheric Environment 163 (2017) 87e9892
for one year, and calculates the statistics required by the user (e.g.,
annual average, 1-h maximum with position and date, 24 h
maximum, percentiles of different averages, 8-h running average,
etc.). In odor modeling LAPOST calculates also the FIDOL parame-
ters (frequency, intensity, duration, offensiveness, and location),
with the exception of the odor offensiveness that is a qualitative,
human-sensation parameter. LAPOST is also used to extract infor-
mation about deposition or particles from the unformatted output
files.

The running speed of LAPMOD is comparable to the one of
CALPUFF and so it can be used for operational short-term applica-
tions and air quality assessments over one or more simulation
years.

5. Evaluation against field data

LAPMOD has been evaluated using the results of the Kincaid
field experiments, both considering the short-term releases of SF6
and the long-term releases of SO2. The Kincaid experiment has
been widely used to evaluate air dispersion models (e.g. Hurley
et al., 2005).

A series of Perl programs have been developed in order to: 1)
read the AERMOD input files distributed by the US-EPA; 2) auto-
matically write all the input files needed by LAPMET and LAPMOD;
and 3) write the batch files running the simulations. The files were
then checked to look for possible inconsistencies. The SF6 releases
have been managed automatically by means of these programs,
while the SO2 releases required more manual work.

For both the experiments, the CALMET-likemeteorological input
files have been built with the LAPMET preprocessor starting from
the AERMOD meteorological input files distributed by the US-EPA
in the model evaluation databases.1 Meteorology is therefore hor-
izontally homogeneous, but varies along the vertical direction,
where the faces of the nine grids were set at the following heights
above the ground (in meters): 20, 40, 60, 140, 200, 500, 1000, 2000
and 3000.

The plume rise has been simulated with the algorithm of
Webster and Thomson (2002) with a1 ¼ 0.110, a2 ¼ 0.500,
a3¼ 0.655 and cD¼ 0.210. For all the evaluations, discrete receptors
have been placed exactly at the point where the ambient moni-
toring stations were located. Among the methods for calculating
the concentrations, the Uliasz parabolic kernel has been chosen for
this evaluation. The comparisons described below have been car-
ried out with LAPMOD version 2017-05-04.

5.1. Kincaid SF6

The Kincaid field experiment was performed as part of the EPRI
Plume Model Validation and Development Project in 1980 and
1981 (Bowne et al., 1983). The Kincaid power plant is situated in
Illinois, USA, and is surrounded by flat farmland and some lakes.
The elevation of the ground above sea level is about 180 m, and the
roughness length is approximately 0.1 m (Olesen, 2005). The power
plant has a 187 m stack with an exit diameter of 9 m. The monitors
were placed at ground level at distances ranging from 500 m to
50 km. Themeteorological conditions weremostly convective, with
some cases of neutral conditions observed.

A quality indicator with values from 0 (worst quality) to 3 (best
quality) has been assigned to the observations of Kincaid SF6. Only
observations of quality 3 have been used for comparison with the
model predictions. The comparison has been made with the Model
1 https://www3.epa.gov/ttn/scram/dispersion_prefrec.htm (Visited on May 17,
2017).
Validation Kit (Olesen, 2005), hereafter referred to as MVK.
The statistical tool distributed with the MVK requires the

normalization of the predicted concentrations, and of the obser-
vations, with the release rate. However, LAPMOD is a 3D non-
stationary dispersion model; therefore, contrary to the Gaussian
plume stationarymodel inwhich the plume is immediately present
at all downwind receptors, some time is needed for the plume to
travel before impacting the receptors downwind. Concentration is
different from zero at a given receptor up to the moment that at
least one computational particle gets close enough to it, so that the
receptor is within the field of the particle's kernel (i.e. of its mass
distribution). The normalization of the concentration values with
the emission rate, as pointed out by Webster and Thomson (2002),
is more meaningful for stationary models because far from the
source (Kincaid has receptors up to 50 km from the source) the
maximum concentration can be predicted at a time characterized
by an emission rate different from the one which caused the
maximum. For this reason, the model results and the observations
were normalized only when the MVK was applied to compare the
results of LAPMOD to those of other models. Where not explicitly
indicated, predicted and observed concentrations are not normal-
ized and therefore expressed in mg/m3.

The scatter plot of predictions against observations, both in mg/
m3, is shown in Fig. 2, left. The region of FA2 (59.5%) is delimited by
two solid lines starting from the origin, while the region of FA5
(85.5%) is delimited by two dashed lines. In general, FAa indicates
the percent of data which satisfies 1/a � Cp/Co � a, where Cp is the
prediction and Co the observation.

The Q-Q plot (Fig. 2, right) represents observations and pre-
dictions separately ranked, and it is useful to see whether their
cumulative distribution functions (CDFs) are similar. It is observed
that LAPMOD has a slight tendency to underpredict for small values
of concentrations (up to about 1.4 mg/m3).

The residual box plots for Kincaid quality 3 data are reported in
Fig. 3. It is observed that the data sum to 324, while quality 3 data
are 338, because there are 14 situations where LAPMOD does not
predict any concentration. The residuals are shown as a function of
the time of day (Hour; a surrogate for solar radiation), the friction
velocity (U*; indicator of wind speed), the mixing height (Zi), and
the stability parameter (Zi/L; ratio between mixing height and
Monin Obukhov length). The residuals have been grouped ac-
cording to classes of the above variables, for each class they have
been ranked and represented. The lower and upper whiskers
represent the 5th and the 95th percentiles respectively, the lower
and the upper part of the gray boxes represent the 25th and the
75th percentile respectively, and the thick black horizontal
segment represent the median (i.e. 50th percentile) of the distri-
bution. The horizontal lines represent the FA2 area. The ratio be-
tween predictions and observations for a perfect model should
always be 1.

The LAPMOD results show that the medians of the ratios are
almost always close to 1, and a significant proportion of the re-
siduals falls between a factor of 2.

The LAPMOD results have been compared against those of other
dispersion models using the Model Validation Kit (Olesen, 2005).
Table 1 shows the performances of LAPMOD and those of other
dispersion models against the measurements carried out at Kin-
caid. The other models considered are HPDM (Earth Tech, USA),
OML (NERI, Denmark), ADMS 3 (CERC, UK), AERMOD (EPA, USA),
ISCST3 (EPA, USA) and NAME (Met Office, UK). Excluding LAPMOD,
the data in Table 1 have been taken from Webster and Thomson
(2002). Only the Kincaid observations characterized by a quality
indicator equal to 3 have been considered, for a total of 338 data.
Both observations and model predictions have been normalized by
dividing the concentrations for the emission rate and multiplying



Fig. 2. Scatter plot (left) and QQ plot (right) for Kincaid quality 3 data.

Fig. 3. Residual box plot for Kincaid quality 3 data.

R. Bellasio et al. / Atmospheric Environment 163 (2017) 87e98 93
by one thousand. The FS parameter is calculated as FS ¼ 2*(sObs e

sMod)/(sObs þ sMod).
Other LAPMOD statistics, not reported in Table 1, are (all

significantly different from zero at 95% confidence limits):
FBfn¼ 0.312, FBfp¼ 0.289, MOEfn¼ 0.692 andMOEfp¼ 0.708. The
FB parameter for LAPMOD (FB ¼ FBfn-FBfp) is not significantly
different from zero at 95% confidence limits. The first maximum
predicted by LAPMOD is 272.70 (observed: 319.30), and the second
maximum is 268.20 (observed: 225.10).

Chang and Hanna (2004, 2005) propose some performance
evaluation criteria to define a “good” model. They require that at
the same time the following three rules be observed:

� the fraction of predictions within a factor of two of observations
is about 50% or greater (i.e., FA2 > 50%);

� the mean bias is within ±30% of the mean (i.e., roughly jFBj < 0.3
or 0.7 < MG < 1.3);

� the random scatter is about a factor of two to three of the mean
(i.e., roughly NMSE < 1.5 or VG < 4).



Table 1
Performance statistics of some dispersion models for the Kincaid observations of
quality 3.

Model Mean s Bias NMSE r FB FS FA2

Observations 54.34 40.25 0.00 0.00 1.000 0.000 0.000 1.000
LAPMOD 53.11 48.02 1.23 0.76 0.448 0.023 �0.176 0.595
HPDM 44.84 38.55 9.50 0.75 0.441 0.192 0.043 0.565
OML 47.45 45.48 6.89 1.24 0.146 0.135 �0.122 0.547
ADMS 3 51.7 34.7 2.7 0.6 0.45 0.05 0.15 0.67
AERMOD 21.8 21.8 32.6 2.1 0.40 0.86 0.59 0.29
ISCST3 30.0 60.0 24.3 2.8 0.26 0.58 �0.39 0.28
NAME 40.6 40.4 13.8 1.15 0.279 0.290 �0.005 0.615

Table 2
Extreme statistics for the Kincaid quality 3 observations. Values for the NAMEmodel
are taken from Webster and Thomson (2002).

Extreme statistics Observations LAPMOD NAME

Maximum concentration 3.928 3.367 3.929
Top ten average 2.506 2.894 2.919
RHC11 3.606 3.707 4.328
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As recognized by Chang and Hanna (2004), the above rules are
not firm guidelines and it is necessary to consider all performance
measures in making a decision concerning model acceptance.
LAPMOD satisfies the three rules in this case study.

The robust higher concentration, RHCR (Cox and Tikvart, 1990),
is a good statistical indicator for judging the ability of a model to
represent the extreme concentration values. It is calculated as

RHCR ¼ CR þ ðCM � CRÞln
�
3R� 1

2

�

Fig. 4. Source (circle) and monitoring positions (squares) in Kincaid SO2. The w
where CR is the Rth highest concentration and CM is the average of
the R-1 highest values. The calculation of RHCR, with R ¼ 11, gives
the results shown in Table 2. The statistics are reported for the
observations, for LAPMOD and, for comparison purposes, for the
NAME model (Webster and Thomson, 2002). Apart from the
maximum concentration, which is perfectly matched by NAME, the
top ten average and the RHC11 calculated by LAPMOD are similar to
observations, with a slight tendency for LAPMOD to underestimate.
5.2. Kincaid SO2

The Kincaid SO2 study (Bowne et al., 1983; Liu and Moore, 1984)
was conducted at the same location as the Kincaid SF6 study. It
involved a buoyant, continuous release of SO2 from a 187 m stack in
rural flat terrain. The study included about six months of data be-
tween April 1980 and June 1981 (a total of 4614 h of samples). There
were 30 SO2 monitoring stations providing 1-h averaged samples
from about 2 km to 20 km downwind of the stack. Two of the
monitoring stations (identified as stations 4 and 8) have been
removed from this analysis due to suspicious data (see the US-EPA's
model evaluation databases). The positions of source and moni-
toring stations are illustrated in Fig. 4; the wind rose represented in
the same figure shows that the receptors north from the source are
often downwind, while in few occasions the plume hits receptors 5
to 10. The Kincaid SO2 tracer release represents a long term
continuous study with no building wake (Perry et al., 2005).

For this long term experiment the comparison has been per-
formed for concentrations paired in time, therefore it is more
demanding than the previous comparison (Kincaid SF6) that was
based on the maximum concentrations observed or predicted over
an arc.

In the US-EPA's AERMET output file for Kincaid SO2 the
ind rose is obtained from the AERMOD surface meteorological input file.
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temperature at hour 9 p.m. of April 17 1980 is 247 K. It has been
substituted with 284.6 K, which is the average value of hours 8 p.m.
(285.4 K) and 10 p.m. (283.9 K). It is also observed that, in some
hours when the convective mixing height is not valid, the me-
chanical mixing height is 5 m or 10 m, which are very low values
that might indicate a ground based inversion.

Some SO2 observations are non-zero when the SO2 emissions
from the stack are zero. These non-null values while the stack is not
emitting are probably due to other sources in the Kincaid area plus
background. The predictions of AERMOD and LAPMOD are correctly
zero when the emissions are zero. The hours with null emissions
have been discarded before performing the model evaluation.

The QQ plot obtained for the 1-h average SO2 concentration is
shown in Fig. 5 for LAPMOD (left) and AERMOD (right). It is
observed that the AERMOD plots reported in this section have been
created with the predictions distributed with the model evaluation
databases, which refer to a previous version of the model. Both
models underestimate the 1-h concentrations; the LAPMOD
Fig. 5. QQ plot of LAPMOD (left) and AERMOD (r

Fig. 6. QQ plot of LAPMOD (left) and AERMOD (r
concentration distribution is close to the observations one up to
about 400 mg/m3, while the underestimation is more pronounced
for higher values. On the contrary, for higher concentrations the
AERMOD predictions are closer to the observations. The AERMOD
ability to describe peak concentrations has been described by Perry
et al. (2005). The results for robust higher concentration also
confirm this ability with RHC26 equal to 1327.3, 1329.0, and 1021.5
respectively for observations, AERMOD, and LAPMOD. Note that
R ¼ 26 has been used here for RHCR, as suggested by Cox and
Tikvart (1990), while for Kincaid SF6 it was R ¼ 11 in order to
compare the LAPMOD predictions with those reported in Webster
and Thomson (2002).

Fig. 5 also reports the FA2 and FA5 values, which are lower than
those predicted for the SF6 release because, as anticipated, the SO2
release predictions and observations at each receptor have been
paired in time. The values of these two statistics are similar for the
two models.

The QQ plot obtained for the 24-h average SO2 concentration is
ight) for 1-h concentrations of Kincaid SO2.

ight) for 24-h concentrations of Kincaid SO2.
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shown in Fig. 6 for LAPMOD (left) and AERMOD (right). AERMOD
still underestimates the observations, while LAPMOD shows a
distribution in good agreement with the measurements.

The period-averaged concentrations at each receptor are shown
Fig. 7. Period averaged concentrations for observ

Fig. 8. RHC26 concentrations for observation
in Fig. 7. The LAPMOD average concentrations are in good agree-
ment with the observations, with an FA2 value of 64.3% for LAP-
MOD and 10.7% for AERMOD.

Finally, the RHC26 values at each receptor are shown in Fig. 8.
ations, AERMOD, and LAPMOD predictions.

s, AERMOD, and LAPMOD predictions.
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When considering the single receptors, instead of the whole 1-h
concentration distribution independently from the position, the
ability of LAPMOD to reproduce the peak concentrations appears
improved. Considering the ratio between predicted and observed
RHC26, the receptors with such a ratio within the interval [0.85,
1.15] are 28.6% and 39.3% for AERMOD and LAPMOD, respectively.

Fig. 8 shows that the maximum AERMOD RHC26 (about 1424 mg/
m3) is predicted at receptor T (the closest to the source at north),
where observations and LAPMOD give a value of 811 mg/m3and
904 mg/m3, respectively. The maximum observed RHC26 is at re-
ceptor 6 (the closest to the source at south), where the predicted
RHC26 are 587 mg/m3 and 1020 mg/m3, respectively, for AERMOD
and LAPMOD. There are also receptors where a good agreement is
observed between observations and AERMOD, while LAPMOD
overpredicts (e.g., receptor 7).

6. Conclusions

This paper describes the theory behind the Lagrangian particle
model LAPMOD and all the software processors composing the
LAPMOD modeling system. LAPMOD is fully linked to the US-EPA
CALMET diagnostic meteorological model and, through its pre-
processor LAPMET, to the meteorological files created by AERMET
for AERMOD.

The LAPMOD execution times are comparable to those of CAL-
PUFF, and therefore LAPMOD is a cost-effective choice for air quality
studies. Moreover, the structure of Lagrangian particle models is
such that they can highly benefit from parallelization, for example
distributing the particles' movements to different processors. In the
future, LAPMOD is expected to implement parallelization and be
linked with other software modules simulating atmospheric flows
outdoors and indoors.

LAPMOD is capable of simulating emissions with high time
resolution and incorporates numerical schemes to treat plume rise
and algorithms for estimating peak concentrations that may be also
useful for odor studies and accidental releases. Concentrations can
be calculated with different kernel methods independently of any
grid mesh.

Particle files extracted with the LAPOST processor can be im-
ported in Google Earth and in many GIS systems. Since particles are
tagged by their sources, it is possible to track the particles emitted
by a specific source and its relative impact. In addition to the
emitting source, other parameters such as radioactive decay and
deposition can be associated to each particle.

The validation of LAPMOD against the Kincaid data for short
term (SF6) and long term (SO2) averages has given good results,
particularly when compared with the results of other well known
models used for regulatory studies.

The LAPMOD system is still under development and testing. The
authors are working to introduce building downwash capabilities
and to validate the model against other tracer data and model
results.

The LAPMOD system is distributed through the Enviroware's
web site (https://www.enviroware.com/lapmod).
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