
• General considerations on atmospheric dispersion
• Lagrangian representation of turbulence
• Eulerian representation of turbulence
• Lagrangian models of atmospheric dispersion
• Eulerian models of atmospheric dispersion
• Street-canyon models

Atmospheric Dispersion
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Atmospheric Dispersion

Dispersion is due to atmospheric turbulence because molecular diffusion is 
too slow at the time scales relevant to air pollution

Molecular diffusion coefficient: ~10-5 m2/s
Turbulent diffusion coefficient: ~1 m2/s (stable) to ~100 m2/s (unstable)



The lagrangian representation of atmospheric dispersion follows the 
motion of the pollutants (particles or molecules) with respect to the mean 
motion of the air parcel (e.g., the stack plume).

The eulerian representation followsthe motion of the pollutants with 
respect to a fixed reference system (for example a surface monitoring 
station). 

Lagrangian and Eulerian Representations



Lagrangian Representation

One assumes that the dispersion process is stochastic (random) and 
that the atmospheric conditions are uniform and stationary: this 
leads to a gaussian distribution of the pollutant around the plume 
centerline.

The concentration integrated over a crosswind plane multiplied by 
the wind speed must be equal to the emission rate: mass 
conservation of the emitted pollutant.

If a gaussian distribution is assumed, then the volume of the puff 
that is within one standard deviation (s) from the puff center 
corresponds to 68 % of the initial mass emitted, within 2 s, 95 %, 
and within 3 s, 99.7 %.



Lagrangian Representation

Solution for a continuous point source:

where C: pollutant concentration (g/m3)
S: emission rate (g/s)
u: wind speed (m/s)
y and z: crosswind distances from the plume centerline (m)
sy and sz: standard deviations of the concentration distribution (m)

C(x, y, z) = S
2π u σ y σ z

exp −
(y − ys )2

2σ y
2

−
(z − zs )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟



Lagrangian Representation
Standard Deviation s

The standard deviations (sy and sz) of the concentration 
distribution must be estimated.  

Taylor’s theorem (1922) states that near the source (t => 0) :

That is, the standard deviations near the source are proportional to 
time, i.e., to the distance from the source if the mean wind speed is 
constant (x = u t).

σ 2 (t) = u2 t 2



Taylor’s theorem states that far from the source (t => ∞) :

where tL is the lagrangian time scale (on the order of 1 min in the 
atmosphere, less near the surface). That is, the standard 
deviations far from the source are proportional to the square 
root of time, i.e., to the square root of the distance from the 
source if the mean wind speed is constant (x = u t).

σ 2 (t) = 2u2 tL t

Lagrangian Representation
Standard Deviation s



Eulerian representation of atmospheric dispersion (mass conservation of 
the pollutant concentration, C):

Accounting for turbulence:

Accounting for continuity of momentum : 

Eulerian Representation
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Reynolds-averaged Navier-Stokes Equations 
(RANS)

Molecular diffusion is represented by Fick’s law:

where F is the mass flux, Dm is the molecular diffusion coefficient, C is the 
concentration of the diffusing species and (dC/dx) is the spatial concentration 
gradient.

By analogy, one may represent the turbulent term using a similar formulation:

Thus, one introduces the turbulent diffusion coefficient Kxx (equivalent to Dm). 
However, Dm is a property of the diffusing species and medium of diffusion, 
whereas Kxx is a property of the flow (i.e., turbulence intensity)

u 'C ' = −Kxx
∂C
∂x

F = −Dm
∂C
∂x



Thus, invoking analogy with Fick’s law for the turbulent diffusion terms:

,       ,

One assumes:
- a constant mean wind (speed and direction) with direction along x
(thus, v = w = 0)
- uniform (constant in space) and stationary (constant over time) 
atmospheric turbulence

Eulerian Representation

u 'C ' = −Kxx
∂C
∂x
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Eulerian Representation

Eulerian representation of dispersion with a continuous emission source, 
S (en g/s), at steady-state (dC/dt = 0), assuming v = w = 0:

where d is the Dirac function:

S is the emission rate at location xs, ys, and zs.

u ∂C
∂x

−
∂
∂x
Kxx

∂C
∂x

−
∂
∂y
Kyy

∂C
∂y

−
∂
∂z
Kzz

∂C
∂z

= S δ(x − xs ) δ(y − ys ) δ(z − zs )

δ(x − xs )= 0 for x ≠ xs
δ(x − xs )= +∞ for x = xs

δ(x − xs )dx =1
−∞

+∞

∫



Eulerian Representation

Eulerian equation for stationary dispersion: Diffusion along the 
plume axis (along x) can be neglected, because it is negligible 
compared to advection by the mean wind (so-called slender plume 
approximation); Kxx = 0.

Solution:

u ∂C
∂x

−
∂
∂y
Kyy

∂C
∂y

−
∂
∂z
Kzz

∂C
∂z

= S δ(x − xs ) δ(y − ys ) δ(z − zs )
C(x, y, z,0) = S0 δ(x − xs )δ(y − ys )δ(z − zs )
C(x, y, z,t) = 0 for x, y,and z→∞

C(x, y, z) = S

4π u t KyyKzz
exp −

(y − ys )2

4Kyyt
−
(z − zs )2

4Kzzt

⎛

⎝
⎜

⎞

⎠
⎟



This solution is a gaussian distribution, which may be expressed as 
follows:

where: 

The eulerian representation is identical to the lagrangian representation 
far downwind from the source, i.e., the standard deviation of the 
gaussian concentration distribution is proportional to the square root of 
time (or distance).

C(x, y, z) = S
2π u σ y σ z

exp −
(y − ys )2

2σ y
2

−
(z − zs )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟

σ x = 2Kxxt

σ y = 2Kyyt

σ z = 2Kzzt

Eulerian and Lagrangian Representations
Standard Deviations s



Standard Deviation s
Evolution from the Source toward the Far Field

Near the source (near field), the lagrangian theory leads to the 
following relationship:

Far downwind from the source (far field), the lagrangian theory 
and the eulerian representation lead to the following relationship:

s (t) = ( 2 K t )1/2 

Therefore, the standard deviation of the gaussian distribution, s
(lagrangian dispersion coefficient), increases faster near the source 
than far downwind from the source. 

σ 2 (t) = u2 t 2



- Near the source, only the eddies smaller than the plume will disperse the 
plume material: relative dispersion.

The eddies larger than the plume will move it around: meandering.

Meandering + relative dispersion: absolute dispersion

- As the plume grows in size, there is a greater number of eddies that are 
smaller in size than the plume and, therefore, available to disperse the 
plume material.

- Once the plume size covers the entire spectrum of eddy sizes, relative 
dispersion becomes commensurate with absolute dispersion and lagrangian
dispersion then becomes equivalent to eulerian dispersion. 

Standard Deviation s
Evolution from the Source toward the Far Field



The ratio of peak (instantaneous) versus time-averaged concentrations 
provides information on the relative dispersion versus absolute 
dispersion characteristics of the plume.

At 6 km from a source, Gifford (1960) estimated ratios of 2 to 3 for 
averaging times of 30 to 140 min.

Ratios are greater near the source and tend toward 1 as the downwind 
distance increases, i.e., as lagrangian and eulerian dispersion become 
equivalent.

Standard Deviation s
Relative versus Absolute Dispersion
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Standard Deviation s
Evolution from the Source toward the Far Field



Since the atmosphere is not a stationary 
and homogeneous medium, the evolution 
of the standard deviations may differ 
significantly from this theoretical 
representation. 

Nevertheless, it is important to note the transition from a near-source 
lagrangian dispersion regime (which depends on the distance from the 
source and is used in near-source models) to an eulerian dispersion 
(which is independent from the distance from the source and is used in 
urban and regional dispersion models).

Log (Distance from the source) 
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Standard Deviation s
Evolution from the Source toward the Far Field



Plume Dispersion
as a Function of Atmospheric Stability

Plume dispersion Vertical profile of the potential temperature 

Stable 

Neutral 

Fanning 

Coning 

Lofting Neutral aloft 
Stable below 

Stable aloft 
Unstable below Fumigating 

Looping Unstable 



Lagrangian dispersion models (use of s dispersion coefficients)
- Gaussian plume models
- Gaussian puff models
- Lagrangian “particle” models

Eulerian dispersion models (use of K dispersion coefficients)
- Chemical-transport models
- Computational fluid dynamics (CFD) models

Hybrid models
- Combination of lagrangian models imbedded within an eulerian model

Atmospheric Dispersion Models



Gaussian Models

Gaussian models can be used to simulate atmospheric dispersion of non-
reactive air pollutants near their source of emission. 

The two main categories are:

- Stationary plume models*
- Puff models (which may be non-stationary)

* Stationary: the inputs (emission, meteorology) are constant over time (generally 
with an hourly time step) and, for meteorology, spatially uniform.



The concentrations of the air pollutants in the plume are represented by the 
following equation:

The ellipse (4sy, 4sz) contains 95.4 % of the gaussian plume material;
The ellipse (2sy, 2sz) contains 68.2 % of the gaussian plume material

Gaussian Plume Models

Crosswind plume 
section

S: emission rate at xs, ys, zs
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Plume height:
zs,f = zs + Dzs

where Dzs is the plume rise above the source height zs; zs,f is the final plume 
height following plume rise

Several formulas are available to calculate the plume rise:
- Briggs
- Holland
- Carson et Moses
- Concawe
- …

The Briggs formula is the most widely used in gaussian plume models

Plume Rise



Plume Rise

Dzs: Plume rise (m)
x: Horizontal distance from the source (m)
u: Horizontal wind speed at source height (m/s)
vi: Initial flue gas vertical velocity (m/s)
ds: Diameter of the source (m)
Ts: Flue gas temperature (K)
T: Ambient temperature (K)
Fa: Dynamic term (m4 s-2)
Fb: Buoyancy term (m4 s-3)
g: Gravitational constant (9.81 m s-2)
xl: Distance at which the final plume rise is 
calculated              

Δzs = (
3Fa x
0.36u2

+ 4.17 Fb x
2

u3
)1/3

Fa =
T
Ts
vi2
ds2

4

Fb = g vi
ds2

4
(Ts −T
Ts

)

xt = 49Fb5/8 forFb ≤ 55

xt =119Fb2/5 forFb ≥ 55

Briggs plume rise formula

xt = 49Fb5/8 forFb ≤ 55

xt =119Fb2/5 forFb ≥ 55



Gaussian Plume Model
Reflection at the Ground

The reflection of a plume at the ground is represented in the gaussian
formula by adding a virtual source, which is the mirror image of the actual 
source with respect to the ground:

C(x, y, z,t) = S
2π uσ yσ z

exp −
y2

2σ y
2

⎛

⎝
⎜

⎞

⎠
⎟ exp −

(z − zs, f )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟+ exp −

(z + zs, f )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Source

Virtual
source

Ground

zs,f
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The reflection of a plume at the bottom of the temperature inversion is represented 
in the gaussian formula by adding a virtual source, which is the mirror image of the 
actual source with respect to the temperature inversion height:

Gaussian Plume Model
Reflection at the Temperature Inversion Height

Inversion 
height

C(x, y, z,t) = S
2π uσ yσ z

exp −
y2

2σ y
2

⎛

⎝
⎜
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⎠
⎟ exp −

(z − zs, f )2

2σ z
2
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⎠
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2σ z
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The reflection of a plume at the ground and at the bottom of the temperature 
inversion can be represented jointly in the gaussian formula by adding a set of 
virtual sources, which leads to the following formula:

Gaussian Plume Model
Reflection at the Ground and at the Inversion Height

An acceptable solution is obtained with N = 1, and a very accurate solution is 
obtained with N = 5.

C(x, y, z,t) = S
2π uσ yσ z

exp −
y2

2σ y
2

⎛

⎝
⎜
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Atmospheric Stability 
Pasquill Classification

- Atmospheric stabilitya is related to turbulence.
- It can be calculated via the Monin-Obukhov length or the Richardson number.
- Empirically, it can be estimated from information that is readily available: time of 
day, cloudiness, and wind speed.

Wind speed 
(m s-1)  
at 10 m 

Day Night 
Solar radiationb Cloudinessc 

Strong Moderate Weak ≥ 4/8 ≤ 3/8 
< 2 A A or B B F F 

2 to 3 A or B B C E F 
3 to 5 B B or C C D E 
5 to 6 C C or D D D D 
> 6 C D D D D 

 
(a) Stability categories: A (very unstable), B (unstable), C (moderately unstable), D (neutral), E (stable), 
F (very stable).
(b) Solar radiation: strong (> 700 W m-2), moderate (between 350 and 700 W m-2), weak (< 350 W m-2)
(c) Cloudiness: fraction of the sky covered by clouds.



Atmospheric Stability 
Vertical Temperature Gradient

- Atmospheric stabilitya is related to turbulence
- Empirically, it can also be estimated from the vertical gradient of the ambient 
temperature, if it is available over a sufficient altitude difference (about 100 m)

(a) Stability categories: A (very unstable), B (unstable), C (moderately unstable), D (neutral), E (stable), 
F (very stable).

 
Atmospheric 

stability category 
Vertical temperature 
gradient (°C / 100 m) 

A ΔT/Δz < - 1.9 
B - 1.9 < ΔT/Δz < - 1.7 
C -1.7 < ΔT/Δz < -1.5 
D - 1.5 < ΔT/Δz < - 0.5 
E -0.5 < ΔT/Δz < 1.5 
F 1.5 < ΔT/Δz 

 



Atmospheric Stability 
Richardson Number

- A formulation of the bulk Richardson number based on vertical measurements of 
temperature and wind speed is as follows:

where T(z) is the temperature (in K) at height z, u(z) is the wind speed (in m/s) at 
height z and g is the gravitational constant (9.81 m/s2).

Rib =
g

T (z1)

(T (z2 )−T (z1))
z2 − z1

u(z2 )−u(z1)
z2 − z1

⎛

⎝
⎜

⎞

⎠
⎟

2



Atmospheric Stability 
Richardson Number

Pasquill stability classes
A: very unstable, B: unstable, C: moderately unstable, D: neutral, E: stable, F: very stable

- Atmospheric stability is related to turbulence
- It can be calculated via the Richarson number (over a significant 
height difference)

 
Atmospheric 

stability category 
Bulk Richardson 

numbera 
Vertical temperature 

gradientb (°C m-1) 
Monin-Obukhov lengthc 

(m) 
A Rib < - 0.86 ΔT/Δz < - 1.9 -10 < LMO < 0 
B - 0.86 < Rib < - 0.37 - 1.9 < ΔT/Δz < - 1.7 - 15 < LMO < - 10 
C - 0.37 < Rib < - 0.10 -1.7 < ΔT/Δz < -1.5 -100 < LMO < -10 
D - 0.10 < Rib < 0.053 - 1.5 < ΔT/Δz < - 0.5 LMO < - 100; 100 < LMO  
E 0.053 < Rib < 0.134 -0.5 < ΔT/Δz < 1.5 30 < LMO < 100 
F 0.134 < Rib 1.5 < ΔT/Δz 0 < LMO < 30 

 (a) The observed temperature must be corrected using a vertical 
gradient of -1 °C / 100 m to obtain the potential temperature.



Gaussian Plume Models
Empirical Dispersion Coefficients

Pasquill-Gifford-Turner (PGT) dispersion coefficients
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Source: D.B. Turner, « Workbook of Atmospheric Dispersion Estimates » (1970) 



Gaussian Plume Models
Empirical Dispersion Coefficients

Dispersion coefficients: Analytical formulas of Pasquill-Gifford

A: very unstable, B: unstable, C: moderately unstable, D: neutral, E: stable, F: very stable

 
Pasquill-Gifford 
Stability σy = exp (ay + by ln(x) + cy (ln(x))2) σz = exp (az + bz ln(x) + cz (ln(x))2) 
 ay by cy az bz cz 
A -1.104 0.9878 -0.0076 4.679 -1.172 0.2770 
B -1.634 1.0350 -0.0096 -1.999 0.8752 0.0136 
C -2.054 1.0231 -0.0076 -2.341 0.9477 -0.0020 
D -2.555 1.0423 -0.0087 -3.186 1.1737 -0.0316 
E -2.754 1.0106 -0.0064 -3.783 1.3010 -0.0450 
F -3.143 1.0148 -0.0070 -4.490 1.4024 -0.0540 
 



Gaussian Plume Models
Empirical Dispersion Coefficients

Dispersion coefficients: Analytical formulas of Briggs-McElroy-Pooler

 
Briggs-McElroy-Pooler 
Stability σy σz 
Rural conditions   
A 0.22 x (1 + 0.0001 x)-1/2 0.20 x   
B 0.16 x (1 + 0.0001 x)-1/2 0.12 x   
C 0.11 x (1 + 0.0001 x)-1/2 0.08 x (1 + 0.0002 x)-1/2 
D 0.08 x (1 + 0.0001 x)-1/2 0.06 x (1 + 0.0015 x)-1/2 
E 0.06 x (1 + 0.0001 x)-1/2 0.03 x (1 + 0.0003 x)-1 
F 0.04 x (1 + 0.0001 x)-1/2 0.016 x (1 + 0.0003 x)-1 
Urban conditions   
A & B 0.32 x (1 + 0.0004 x)-1/2 0.24 x (1 + 0.001 x)1/2 
C 0.22 x (1 + 0.0004 x)-1/2 0.20 x 
D 0.16 x (1 + 0.0004 x)-1/2 0.14 x (1 + 0.0003 x)-1/2 
E & F 0.11 x (1 + 0.0004 x)-1/2 0.08 x (1 + 0.00015 x)-1/2 
 

A: very unstable, B: unstable, C: moderately unstable, D: neutral, E: stable, F: very stable



Gaussian Plume Models
Simple Chemistry

The formulation of the gaussian plume model applies to chemically inert 
species (i.e, non-reactive). However, it is possible to add a term to account 
for a first-order loss term (i.e. proportional to the air pollutant 
concentration) to the gaussian equation; then, one obtains the following 
equation, which holds for a first-order chemical kinetics (i.e., the oxidant 
concentration, [X], is assumed to be constant):

C(t) =C0 exp −k [X] t( ) =C0 exp −k ' t( )

C(x, y, z) = S
2π uσ yσ z

exp −
y2

2σ y
2

⎛

⎝
⎜

⎞

⎠
⎟ exp −

(z − zs, f )2
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2
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⎝
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⎞

⎠
⎟+ exp −

(z + zs, f )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ exp −k 't( )



Gaussian Plume Models
Rain Scavenging (Washout)

It is also possible to add a term to the gaussian equation to account for the 
scavenging of air pollutants by rain using a first-order loss term (i.e.
proportional to the air pollutant concentration) that includes an empirical 
scavenging rate coefficient, L (s-1); then, one obtains the following 
equation:

C(t) =C0 exp −Λ t( )

C(x, y, z) = S
2π uσ yσ z

exp −
y2

2σ y
2

⎛

⎝
⎜

⎞

⎠
⎟ exp −

(z − zs, f )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟+ exp −

(z + zs, f )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ exp −Λ t( )



Gaussian Plume Models
Dry Deposition

Dry deposition is more difficult to represent in the gaussian dispersion 
formula, because it affects the concentrations of the pollutant near the 
surface rather than the concentrations throughout the plume. The most 
appropriate representation consists in treating dry deposition as a partial 
absorption at the surface:

where vd is the dry deposition velocity; for a = 1, there is no dry deposition 
(vd = 0) and for a = -1, there is complete dry deposition of plume material in 
contact with the surface

C(x, y, z) = S
2π uσ yσ z

exp −
y2

2σ y
2

⎛

⎝
⎜

⎞

⎠
⎟ exp −

(z − zs, f )2

2σ z
2

⎛

⎝
⎜

⎞

⎠
⎟+αd exp −

(z + zs, f )2

2σ z
2
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⎝
⎜

⎞

⎠
⎟

⎛

⎝
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⎞

⎠
⎟⎟

αd =1−
2vd

vd + u zs, f σ z
−1( ) dσ z

dx
⎛

⎝
⎜

⎞

⎠
⎟



Gaussian Plume Models
Limitations

- Gaussian models have limitations that result from the hypotheses associated 
with their formulation: 

- They do not apply far from sources (appropriate if x < 50 km).

- They apply to flat terrain: approximations can be made to treat specific 
cases (e.g., hill), but they cannot treat certain configurations (e.g., street-
canyon). 

- They apply to simple meteorological conditions: they can take into 
account the effect of an elevated inversion layer, but they cannot treat 
wind shear for example. 



- Lagrangian models, as gaussian models, calculate air pollutant 
concentrations with respect to a reference system that follows the trajectory 
of the mean wind. However, the hypothesis of stationary conditions (i.e., 
constant wind speed and direction) is no longer necessary. 

- There are two major categories of lagrangian models:
- 2D Gridded lagrangian models with an expanding grid positioned 

crosswind
- Lagrangian puff and “particle” models

Lagrangian Models



- Puff and “particle” lagrangian models can handle complex wind fields, such 
as wind shear, because distinct puffs or “particles” can follow different 
trajectories. 

- Individual puffs may use gaussian concentration profiles; however, the puff 
ensemble, which constitutes the plume, does not necessarily show gaussian 
concentration profiles because of the different trajectories followed by the 
individual puffs. Some approximations must be made for the atmospheric 
chemistry because average concentrations are typically assumed for each 
individual puff. 

- “Particle” models cannot treat chemistry because there is no air volume 
associated with the “particles”.

Lagrangian Puff Models



- Puff model: the chemistry may be treated using spatially-averaged 
concentrations in each puff. Chemistry

Lagrangian Puff Models



Lagrangian “Particle” Models

- “Particle” model: the dispersion under complex configurations (e.g., 
buildings, complex terrain) can be treated if the wind field and turbulence 
are provided (for example, from a computational fluid mechanics 
simulation).



Eulerian Models
The Chemical-Transport Equation

- The chemical-transport equation (also called the atmospheric diffusion 
equation or the mass conservation equation) does not have an analytical 
solution except for very simple cases (for example in the case of a 
steady-state gaussian plume) that are typically not representative of the 
atmosphere at regional or global scales. Therefore, a numerical solution 
is needed. It is generally solved via a discretization of the chemical-
transport equation. 
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Eulerian Models
Various Representations of Vertical Dispersion

Asymmetric convective mixing 
(ACM) 

K-type turbulent diffusion Asymmetric convective mixing 
with K-type diffusion (ACM2) 



Eulerian Models
Representation of Vertical Dispersion (Kz)
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- There are three major approaches to treat horizontal dispersion:

- No horizontal dispersion: one considers that numerical diffusion due to 
the advection algorithm is sufficient to create horizontal dispersion

- Smagorinsky algorithm
(or similar)

- Unif algorithm (or similar)

Eulerian Models
Representations of Horizontal Dispersion
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- Smagorinsky algorithm

- The dispersion coefficient is proportional to the horizontal grid surface 
area, X2.

- Numerical diffusion increases with the grid size.

- Therefore, the Smagorinsky algorithm leads to an increase in horizontal 
dispersion as the grid resolution becomes coarser. 

Eulerian Models
Representations of Horizontal Dispersion



- Unif algorithm

- The dispersion coefficient is inversely proportional to the horizontal grid 
surface area: X-2.

- Numerical diffusion increases with the grid size.

- Therefore, the Unif algorithm leads to an increase in horizontal 
dispersion as the grid resolution becomes finer. 

Eulerian Models
Representations of Horizontal Dispersion



- Combining both formulations, using Unif for large grid sizes and 
Smagorinsky for small grid sizes, provides an optimal approach for 
horizontal dispersion in eulerian models.
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Eulerian Models
Representations of Horizontal Dispersion



- Street-canyon models represent the dispersion of air pollutants within a street 
canyon and the interactions between the street air volume and (1) the 
background urban air above roof level (represented by the vertical dispersion 
coefficient sw) and (2) the street-canyons located upwind and downwind.

- Dimensions of the street canyon: Ls, Ws, and hb

- Concentrations of the air pollutant: C, Cb (background air), and Cu (upwind)
- Meteorological conditions: us (horizontal wind speed within the street 

canyon) and sw (standard deviation of vertical wind speed at roof level)
- Dry deposition flux: Fd

Street-Canyon Models

us hbWsCu + S Ls = us hbWsC + Fd Ls (Ws + 2hb )+
σ wWs Ls
2π

(C −Cb )



Eulerian and Lagrangian Models
Hybrid (Plume-in-grid) Models

- If one wants to simulate background air pollution (urban or regional) and 
near-field pollution, one may construct a hybrid model, which simulates 
background air pollution in an eulerian grid system and the near-source air 
pollution with a lagrangian approach (using puffs, plumes or simple 
parameterizations) embedded within the eulerian model. This approach is 
called “plume-in-grid” (PinG) modeling (although it may actually use puff 
models to simulate the plumes) or multi-scale modeling.

- Hybrid models offer several advantages:
- Representation of the near-source pollution at the sub-grid level 
- Correct treatment of atmospheric dispersion and chemistry for the plumes 

emitted from large point sources (stacks of power plants, cement plants, 
refineries…), volume sources (fugitive emissions from refineries, 
chemical plants…), and line sources (major roads and freeways, airplanes, 
ships, street canyons…). 



- CFD models can provide a large array of parameterizations of turbulence 
with very fine spatial resolution and complex configurations:

- K-theory
- k-e
- k-w
- Large eddy simulation (LES)

Computational Fluid Dynamics (CFD) Models



Air Pollution Models

Gaussian plume models: near-source pollution

Lagrangian models: near-source and long-distance pollution for a limited 
number of sources

Eulerian models: urban background pollution up to regional, continental 
and global pollution for all sources (> 1 km resolution)

Street-canyon models: near-source pollution

Hybrid models (plume-in-grid): background pollution and near-source 
pollution

CFD models: near-source pollution with complex configurations



Gaussian Plume Models
Advantages and Shortcomings

Advantages:
- Simple analytical formulas 
- Easy to develop a computer code
- Short computational times

Shortcomings:
- Only a few sources can typically be handled
- Constant atmospheric conditions (wind speed and direction, 
atmospheric stability) during a given period (typically 1 hour) and 
domain (< 50 km at most)
- Simple terrain (ideally flat, parameterizations available for simple 
configurations such as hills)
- Simple chemistry 



Lagrangian Puff and “Particle” Models
Advantages and Shortcomings

Advantages:
- Simple analytical formulas (although some may use more advanced 
parameterizations)
- Short computational times compared to 3D gridded models
- Possibility to handle 3D flow fields
- Possibility to simulate long-range transport
- Possibility to handle comprehensive chemistry, but with some 
approximations

Shortcomings:
- Only a few sources can typically be handled



Eulerian Models
Advantages and Shortcomings

Advantages:
- 3D representation
- Comprehensive chemistry and deposition processes
- All sources can be handled
- Large domains can be simulated

Shortcomings:
- Limited spatial resolution (> 1 km): no near-source resolution
- Large computational times



Street-canyon Models
Advantages and Shortcomings

Advantages:
- Simple analytical formulas 
- Easy to develop a computer code
- Short computational times

Shortcomings:
- Parameterized representations of the air flow
- Constant atmospheric conditions (wind speed and direction, 
atmospheric stability) during a given period (typically 1 hour) and 
domain (street network)
- Idealized representation of the building configuration (uniform building 
height and street width for a given street)
- Simple chemistry 



Hybrid Models
Advantages and Shortcomings

Advantages:
- Those of the near-source models and those of the 3D eulerian models 

Shortcomings:
- Greater computational times than the standard eulerian models, 
depending on the number of sources treated at the subgrid scale



CFD Models
Advantages and Shortcomings

Advantages:
- Navier-Stokes equations: good representation of the 3D flow 
- Possibility to represent turbulence with various levels of detail (K-
theory, k-e, k-w, LES, etc.)
- Complex configurations can be simulated (hills, buildings, etc.)
- Possibility to include comprehensive chemistry and deposition 
processes
- Several sources can be handled

Shortcomings:
- Very large computational times


