Fire Plume Modeling

Frank Freedman

EnviroComp, Inc.

San Jose State University

Short Course on Introduction to Air Pollution Modeling, Wessex Institute November 15, 2023

Industrial Plumes vs. Large Fires

Gaussian Models

Fire Models

Talk Outline

- Part 1: Background
 - Fires: Photos & Diagrams
 - Fire Modeling: Basic Inputs & Parameters
 - Modeling Goals and Strategies
- Part 2: CFD Modeling of Fires using FDS
 - Model Description, Setup, I/O
 - Pool Fire Test Case (Neutral Atmospheric Stability)
 - Pool Fire Test Case (Stable Atmospheric Stability)
- Part 3: Modeling with BUOYANT
 - Non-CFD: Steady-State Plume Model with fire plume rise model
 - Test Cases: How much of fire plume resides in ABL?

Part 1: Background

Large Industrial Fires

- Heat and Mass Fluxes
- Buoyancy Flux = Heat Release Rate x Area of Release
- Plume Rise, Plume Buoyancy, Clean Air Entrainment
- Constituents: Carbon Dioxide, Smoke, Trace Metals, others

Large Industrial Fires

- Plume Rise through the Atmospheric Boundary Layer?
- Penetration into the inversion capping the ABL

Fire Dispersion: Physics & Modeling (1)

Kukkonen et al (2022); <u>https://gmd.copernicus.org/articles/15/4027/2022/</u>

Fire Dispersion Physics & Modeling (2)

Top of the boundary layer

Kukkonen et al (2000); https://link.springer.com/chapter/10.1007/978-1-4615-4153-0_55

Fire Modeling: Basic Inputs & Parameters (Emissions)

Heat & Mass Release Rate

 $qHc = \Delta Hc x mfuel$

where:

qHc = the heat release rate (kJ/s = kW)

 Δ Hc = the heat of combustion (MJ/kg)

```
mfuel = the mass flow rate of the fuel (g/s)
```

Fire Modeling: Basic Inputs & Parameters (Emissions)

Example: Pool Fires

Acetone (C_3H_6O) 25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6) 40 1000.0852.72.330.0670.0180.1Butane (C_4H_{10}) 45 7000.0782.72.850.0070.0030.0Heptane (C_7H_{16}) 44 6000.1011.12.850.010.0040.0Kerosene43 2000.0393.52.830.0120.0040.0LNG (mostly CH_4)50 0000.0781.12.72LPG (mostly C_3H_8)46 0000.0991.42.850.0050.0010.0	Heat of Combustion		Mass Release Rate (Infinite-diameter pool)			Yields		
Acetone (C_3H_6O) 25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6) 40 1000.0852.72.330.0670.0180.1Butane (C_4H_{10}) 45 7000.0782.72.850.0070.0030.0Heptane (C_7H_{16}) 44 6000.1011.12.850.010.0040.0Kerosene43 2000.0393.52.830.0120.0040.0LNG (mostly CH_4)50 0000.0781.12.72LPG (mostly C_3H_8)46 0000.0991.42.850.0050.0010.0						γ		
Acetone (C_3H_6O) 25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6) 40 1000.0852.72.330.0670.0180.1Butane (C_4H_{10}) 45 7000.0782.72.850.0070.0030.0Heptane (C_7H_{16}) 44 6000.1011.12.850.010.0040.0Kerosene43 2000.0393.52.830.0120.0040.0LNG (mostly CH_4)50 0000.0781.12.72	LPG (mostly C ₃ H ₈)	46 000	0.099	1.4	2.85	0.005	0.001	0.024
Acetone (C_3H_6O) 25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6) 40 1000.0852.72.330.0670.0180.1Butane (C_4H_{10}) 45 7000.0782.72.850.0070.0030.0Heptane (C_7H_{16}) 44 6000.1011.12.850.010.0040.0Kerosene43 2000.0393.52.830.0120.0040.0	LNG (mostly CH ₄)	50 000	0.078	1.1	2.72	_	_	_
Acetone (C_3H_6O) 25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6) 40 1000.0852.72.330.0670.0180.1Butane (C_4H_{10}) 45 7000.0782.72.850.0070.0030.0Heptane (C_7H_{16}) 44 6000.1011.12.850.010.0040.0	Kerosene	43 200	0.039	3.5	2.83	0.012	0.004	0.042
Acetone (C_3H_6O) 25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6) 40 1000.0852.72.330.0670.0180.1Butane (C_4H_{10}) 45 7000.0782.72.850.0070.0030.0	Heptane (C ₇ H ₁₆)	44 600	0.101	1.1	2.85	0.01	0.004	0.037
Acetone (C_3H_6O)25 8000.0411.92.140.0030.0010.0Benzene (C_6H_6)40 1000.0852.72.330.0670.0180.1	Butane (C ₄ H ₁₀)	45 700	0.078	2.7	2.85	0.007	0.003	0.029
Acetone (C ₃ H ₆ O) 25 800 0.041 1.9 2.14 0.003 0.001 0.0	Benzene (C ₆ H ₆)	40 100	0.085	2.7	2.33	0.067	0.018	0.181
	Acetone (C_3H_6O)	25 800	0.041	1.9	2.14	0.003	0.001	0.014
$kJ kg^{-1} kg (m^2 s)^{-1} m^{-1} gg^{-1} gg^{-1} gg^{-1} gg^{-1} gg^{-1}$		kJ kg ⁻¹	$kg (m^2 s)^{-1}$	m^{-1}	gg ⁻¹	gg^{-1}	gg^{-1}	gg^{-1}

Kukkonen et al (2022); <u>https://gmd.copernicus.org/articles/15/4027/2022/</u>

Fire Modeling: Basic Inputs & Parameters (Meteorological)

Dispersion

- Wind Speed
- Atmospheric Stability
- Boundary Layer Depth, Height of Inversion Base
- Atmospheric Lapse Rate above Boundary Layer

Particle Formation, Chemistry, Deposition

- Humidity
- Precipitation

Desired Features in Fire Dispersion Model

- Simple but effective inputs to characterize source characteristics
 - Mass and heat release
 - Constituents
- Proper handling of plume rise
 - Enhanced buoyancy
 - Entrainment of ambient air into rising fire plume
 - > CFD directly simulates, plume models must parameterize
- Capturing induced circulations
 - Fire-driven circulations due to strong buoyant convection
 - Need CFD for this

Fire Dispersion Models: Options

• Computational Fluid Dynamics (CFD)

- Fire Dynamics Simulator (FDS, <u>https://www.nist.gov/services-resources/software/fds-and-smokeview</u>
- Full 3-D solutions for Navier-Stokes equations
- Full suite of embedded models for fire physical processes (pyrolysis, combustion, phase change, chemistry, etc ...)
- Near-Field (within 1-km from source)

• Gaussian Dispersion Models designed for fires

- BUOYANT (<u>https://gmd.copernicus.org/articles/15/4027/2022/</u>)
- Steady-state w/ Embedded fire plume rise model
- > Far-Field (beyond 1-km from source)

Highlight: Near vs. Far-Field Modeling

Far Field, Gaussian Fire

Part 2: CFD Modeling using FDS (near-field dispersion)

Fire Dynamics Simulator (FDS): Basics

- U.S. National Institute of Standards and Technology (NIST)
- <u>https://www.nist.gov/services-resources/software/fds-and-smokeview</u>
- Computational Fluids Dynamics (CFD)
- Full Physics: Various physical processes, sub-models and configurations
- Indoor and outdoor capabilities
- Simulates fire generation/spread and dispersion of reactants/smoke
- Rectangular grid (relatively simple mesh generation ...)

Fire Dynamics Simulator (FDS) Installation & Execution

- Windows executable (no compilation necessary)
- Command line interface (no GUI)
- Enter inputs into text file
- Smokeview graphics to view output

FDS Test Runs: Grid & Fire Inputs

• Grid

- 25 x 25 x 25 m resolution over 2000 x 1000 x 1000 m domain (80 x 40 x 40)
- Surface "pool" fire of 150 x 150 m centered at (x, y, z) = (1000,500,25)

• Fire Inputs

- Single-step mixing controlled combustion
- Fuel is propane
- Heat Release Rate = 250 kW/m2
- Corresponds to a fuel consumption rate of about 0.005 kg/m2/s
- Set 10% of reactants to be smoke (by mass)

FDS Test Runs: Meteorological Inputs

- Wind: Boundary layer background flow of about 2 m/s
- Neutral Case: Set lapse rate to adiabatic (stability class D)
- Stable Case: Set lapse rate to isothermal (stability class E or F)

Compare output for neutral vs. stable

FDS Test Runs: Procedure

- 14400 seconds integration time (= 4 hours)
- "Turn on" fire @ t = 7200
 - 0 < t < 7200: "spin up" period to bring background wind to quasi steady-state
 7200 < t < 14400: "fire period"
- After period of build-up of fire @ t = 7200, new "fire-affected" quasi steady-state is reached by around t = 8400.
- Plots to be shown are @ t = 14400 (final time)

Neutral: Smoke & Temperature (image)

Neutral: Smoke and Temperature (video link)

Neutral: Smoke & Winds (image)

0.0

Stable: Smoke & Temperature (image)

Stable: Smoke and Temperature (video link)	─ Slice temp C
	51.77
	48.26
	44.75
	41.24
	37.73
	34.22
	30.71
	27.2
	23.69
	20.18
	16.67

Stable: Smoke & Winds (image)

Smoke visuals @ t = 2 hours after fire start

z = 1000 m

Neutral

Stable

Smoke visuals overlaid w temperature (deg C) @ t = 2 hours after fire start

Flow vectors @ t = 2 hours after fire start

Stable

Stable

Neutral

PM2.5 (ug/m3) vs. Height (meters) @ different downwind distances from fire

Ground Level PM2.5 Concentrations (ug/m3) vs. Downwind Distance from Fire (m)

PM2.5 (ug/m3)

Part 3: Gaussian Plume Modeling using BUOYANT

Reminder: Near vs. Far-Field Modeling

BUOYANT: Basics

- Finnish Meteorological Institute
- <u>https://gmd.copernicus.org/articles/15/4027/2022/</u>
- Steady-State Gaussian plume model
- Embedded fire plume rise model
- Far-field dispersion (> 1 km)

BUOYANT: Installation & Execution

- FORTRAN code (compilation necessary)
- Need to install FORTRAN compiler
- MSYS2 virtual LINUX required on WINDOWS, has 'gfortran' as a package
- Command line interface (no GUI)
- Enter inputs into text file
- Text file outputs

Large Industrial Fires

- Question ... how much of the plume stays within the ABL?
- Run cases to check how model predicts this quantity.

BUOYANT: Test Runs

Meteorological Inputs

- Wind Speed = 3.22 m/s
- Neutral ABL w depth = 1000 m
- Pool Fire: Case 1 ("low' heat release)
 - Heat Release Rate = 20 kW/m2
- Pool Fire: Case 2 ("medium" heat release)
 - Heat Release Rate = 700 kW/m2
- Pool Fire: Case 3 ("high" heat release)
 - Heat Release Rate = 1800 kW/m2

Reminder: FDS Test Runs

• Grid

- 25 x 25 x 25 m resolution over 2000 x 1000 x 1000 m domain (80 x 40 x 40)
- Surface "pool" fire of 150 x 150 m centered at (x, y, z) = (1000,500,25)

• Fire Inputs

- Single-step mixing controlled combustion
- Fuel is propane
- Heat Release Rate = 250 kW/m2
- Corresponds to a fuel consumption rate of about 0.005 kg/m2/s
- Set 10% of reactants to be smoke (by mass)

BUOYANT Test Runs: Results

(Fraction of plume that stays in the ABL)

Modeling Run	Heat Release Rate (kW/m2)	Fraction of Plume in ABL
Case 1 (Low Heat Release)	20	0.5597
Case 2 (Medium Heat Release)	700	0.1874
Case 3 (High Heat Release)	1800	0.05533

- Fraction in ABL highly sensitive to fire strength (via heat release)
- More plume in ABL \rightarrow High surface concentration
- Appears to capture an observable feature of strong fires ... that most plume mass can stay aloft above ABL

Conclusions

Dispersion Modeling for Fires

- Two approaches demonstrated as alternatives to typical Gaussian models
- Initial test results of both appear promising
- Computational Fluid Dynamics, CFD)
 Fire Dynamics Simulator (FDS)

2. Steady-Steady Gaussian Modeling with Fire Plume Rise **BUOYANT**