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Industrial Plumes vs. Large Fires

Fire ModelsGaussian Models



Talk Outline
• Part 1: Background

− Fires: Photos & Diagrams
− Fire Modeling: Basic Inputs & Parameters
− Modeling Goals and Strategies

• Part 2: CFD Modeling of Fires using FDS
− Model Description, Setup, I/O
− Pool Fire Test Case (Neutral Atmospheric Stability)
− Pool Fire Test Case (Stable Atmospheric Stability)

• Part 3: Modeling with BUOYANT
− Non-CFD: Steady-State Plume Model with fire plume rise model
− Test Cases: How much of fire plume resides in ABL?



Part 1: Background



Large Industrial Fires

• Plume Rise, Plume Buoyancy, Clean Air Entrainment
• Constituents: Carbon Dioxide, Smoke, Trace Metals, others

• Heat and Mass Fluxes
• Buoyancy Flux = Heat Release Rate x Area of Release



Large Industrial Fires

• Plume Rise through the Atmospheric Boundary Layer?
• Penetration into the inversion capping the ABL



Fire Dispersion: Physics & Modeling (1)

Kukkonen et al (2022); https://gmd.copernicus.org/articles/15/4027/2022/ 

https://gmd.copernicus.org/articles/15/4027/2022/


Fire Dispersion Physics & Modeling (2)

Kukkonen et al (2000); https://link.springer.com/chapter/10.1007/978-1-4615-4153-0_55 

https://link.springer.com/chapter/10.1007/978-1-4615-4153-0_55


Heat & Mass Release Rate 

qHc = ΔHc x mfuel

where:

qHc = the heat release rate (kJ/s = kW)

ΔHc = the heat of combustion (MJ/kg)

mfuel = the mass flow rate of the fuel (g/s)

Fire Modeling: Basic Inputs & Parameters (Emissions)



Fire Modeling: Basic Inputs & Parameters (Emissions)

Kukkonen et al (2022); https://gmd.copernicus.org/articles/15/4027/2022/

Heat of Combustion

Example: Pool Fires

Mass Release Rate
(Infinite-diameter pool) Yields

(mass released per mass fuel burned)

https://gmd.copernicus.org/articles/15/4027/2022/


Dispersion
• Wind Speed
• Atmospheric Stability
• Boundary Layer Depth, Height of Inversion Base
• Atmospheric Lapse Rate above Boundary Layer

Particle Formation, Chemistry, Deposition
• Humidity
• Precipitation

Fire Modeling: Basic Inputs & Parameters 
(Meteorological)



Desired Features in Fire Dispersion Model

• Simple but effective inputs to characterize source characteristics
Ø Mass and heat release
Ø Constituents

• Proper handling of plume rise
Ø Enhanced buoyancy
Ø Entrainment of ambient air into rising fire plume
Ø CFD directly simulates, plume models must parameterize

• Capturing induced circulations
Ø Fire-driven circulations due to strong buoyant convection
Ø Need CFD for this



• Computational Fluid Dynamics (CFD)
Ø Fire Dynamics Simulator (FDS, https://www.nist.gov/services-resources/software/fds-and-smokeview
Ø Full 3-D solutions for Navier-Stokes equations
Ø Full suite of embedded models for fire physical processes (pyrolysis, combustion, phase change, 

chemistry, etc …)
Ø Near-Field (within 1-km from source)

• Gaussian Dispersion Models designed for fires
Ø BUOYANT (https://gmd.copernicus.org/articles/15/4027/2022/)
Ø Steady-state w/ Embedded fire plume rise model
Ø Far-Field (beyond 1-km from source)

Fire Dispersion Models: Options

https://www.nist.gov/services-resources/software/fds-and-smokeview
https://gmd.copernicus.org/articles/15/4027/2022/


Highlight: Near vs. Far-Field Modeling

Near Field, CFD
Far Field, Gaussian Fire



Part 2: CFD Modeling using FDS
(near-field dispersion)



Fire Dynamics Simulator (FDS): Basics
• U.S. National Institute of Standards and Technology (NIST)
• https://www.nist.gov/services-resources/software/fds-and-smokeview
• Computational Fluids Dynamics (CFD)
• Full Physics: Various physical processes, sub-models and configurations
• Indoor and outdoor capabilities
• Simulates fire generation/spread and dispersion of reactants/smoke
• Rectangular grid (relatively simple mesh generation …)

https://www.nist.gov/services-resources/software/fds-and-smokeview


Fire Dynamics Simulator (FDS)
Installation & Execution

• Windows executable (no compilation necessary)
• Command line interface (no GUI)
• Enter inputs into text file
• Smokeview graphics to view output



FDS Test Runs: Grid & Fire Inputs
• Grid

‒ 25 x 25 x 25 m resolution over 2000 x 1000 x 1000 m domain (80 x 40 x 40)
‒ Surface “pool” fire of 150 x 150 m centered at (x, y, z) = (1000,500,25) 

• Fire Inputs
‒ Single-step mixing controlled combustion
‒ Fuel is propane
‒ Heat Release Rate = 250 kW/m2
‒ Corresponds to a fuel consumption rate of about 0.005 kg/m2/s
‒ Set 10% of reactants to be smoke (by mass)



• Wind: Boundary layer background flow of about 2 m/s
• Neutral Case: Set lapse rate to adiabatic (stability class D)
• Stable Case: Set lapse rate to isothermal (stability class E or F)

Compare output for neutral vs. stable

FDS Test Runs: Meteorological Inputs



• 14400 seconds integration time  (= 4 hours)
• “Turn on” fire @ t = 7200

‒ 0 < t < 7200: “spin up” period to bring background wind to quasi steady-state
‒ 7200 < t < 14400: “fire period”

• After period of build-up of fire @ t = 7200, new “fire-affected” quasi 
steady-state is reached by around t = 8400.
• Plots to be shown are @ t = 14400 (final time)

FDS Test Runs: Procedure



Neutral: Smoke & Temperature (image)



Neutral: Smoke and Temperature (video link)

https://www.apsi.tech/material/zannetti/WITshortcourse2023/CFD-Fire-Neutral.mp4


Neutral: Smoke & Winds (image)



Stable: Smoke & Temperature (image)



Stable: Smoke and Temperature (video link)

https://www.apsi.tech/material/zannetti/WITshortcourse2023/CFD-Fire-Stable.mp4


Stable: Smoke & Winds (image)



Neutral Stable

Smoke visuals @ t = 2 hours after fire start
z = 1000 m



Neutral

Smoke visuals overlaid w temperature (deg C) 
@ t = 2 hours after fire start

Stable



Flow vectors @ t = 2 hours after fire start
Stable

Neutral Stable
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Part 3: Gaussian Plume Modeling using 
BUOYANT



Reminder: Near vs. Far-Field Modeling

Near Field, CFD
Far Field, Gaussian Fire



BUOYANT: Basics
• Finnish Meteorological Institute
• https://gmd.copernicus.org/articles/15/4027/2022/
• Steady-State Gaussian plume model
• Embedded fire plume rise model
• Far-field dispersion (> 1 km)

https://gmd.copernicus.org/articles/15/4027/2022/


BUOYANT: Installation & Execution

• FORTRAN code (compilation necessary)
• Need to install FORTRAN compiler
• MSYS2 virtual LINUX required on WINDOWS, has ‘gfortran’ as a package
• Command line interface (no GUI)
• Enter inputs into text file
• Text file outputs



Large Industrial Fires

• Question … how much of the plume stays within the ABL?
• Run cases to check how model predicts this quantity.



BUOYANT: Test Runs

•Meteorological Inputs
‒ Wind Speed = 3.22 m/s
‒ Neutral ABL w depth = 1000 m 

• Pool Fire: Case 1 (“low’ heat release)
‒ Heat Release Rate = 20 kW/m2

• Pool Fire: Case 2 (“medium” heat release)
‒ Heat Release Rate = 700 kW/m2

• Pool Fire: Case 3 (“high” heat release)
‒ Heat Release Rate = 1800 kW/m2



Reminder: FDS Test Runs
• Grid

‒ 25 x 25 x 25 m resolution over 2000 x 1000 x 1000 m domain (80 x 40 x 40)
‒ Surface “pool” fire of 150 x 150 m centered at (x, y, z) = (1000,500,25) 

• Fire Inputs
‒ Single-step mixing controlled combustion
‒ Fuel is propane
‒ Heat Release Rate = 250 kW/m2
‒ Corresponds to a fuel consumption rate of about 0.005 kg/m2/s
‒ Set 10% of reactants to be smoke (by mass)



Modeling Run Heat Release Rate (kW/m2) Fraction of Plume in ABL
Case 1 (Low Heat Release) 20 0.5597
Case 2 (Medium Heat Release) 700 0.1874
Case 3 (High Heat Release) 1800 0.05533

BUOYANT Test Runs: Results
(Fraction of plume that stays in the ABL)

• Fraction in ABL highly sensitive to fire strength (via heat release)
• More plume in ABL → High surface concentration
• Appears to capture an observable feature of strong fires … that most plume mass can stay aloft above ABL



Conclusions



Dispersion Modeling for Fires

• Two approaches demonstrated as alternatives to typical Gaussian models
• Initial test results of both appear promising

1. Computational Fluid Dynamics, CFD)
Fire Dynamics Simulator (FDS)

2. Steady-Steady Gaussian Modeling with Fire Plume Rise
BUOYANT


