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What is Air Pollution?

e Air Pollution represents the presence of chemicals and particles SECONDARY.
in the atmosphere above a certain threshold that cause health Yok s e
hazards and damage ecosystems. Most NO3 _

PRIMARY POLLUTANTS

e In UK, the Department for Environment, Food and Rural Affairs e OO o 0B

defines these thresholds in terms of National Ambient Air & suapeadiad partisies

Quality Standards (NAAQS):
o Maximum daily 8 hour average ozone NAAQS: 100 pg/m3
o 24-h average PM2.5 NAAQS: 20 ug/m3

e Air pollutants are either emitted directly to the atmosphere or
form via chemical reactions in the atmosphere.

e Air pollution cause huge losses in the UK
o 28,000-36,000 premature deaths
o Economic loss: ~ £20 billion per year



Air Pollution Is a global threat

* 7 million premature
deaths [WHO, 2018]

« US$5 trillion economic

T Tty ) | loss [World Bank, 2015]

% R SR | s «  79-121 million tones of

LosAngeles:” . :"New Delhi Jifal

lost crop produces
globally [Avnery et al.,
2011]
* 94 million people can
o | be fed in India by
ey . saving crops from

London @ - Santiado = ozone damage [Ghude
et al., 2014]




Framework to address air pollution

Numerical
modeling (box,
one-, two-, three-
dimensional)

Measurements
(Laboratory, Field,
SEICHITES)

Information dissemination and
policy making




Why do we need air pollution forecasts?

1) Protecting public health through air quality warnings and alerts

2) Protecting ecosystems

3) Short-term temporary regulatory actions and urban planning including monitoring networks
4) Medical infrastructure management

5) Increased public productivity through healthier population -> economic benefits

6) Public awareness and education that is vital for mitigation




Deterministic and Probabilistic forecasts

Initial time

Intermediate
forecast lead time

Ensemble forecasts allow us to sample the entire uncertainty space and quantify the Final forecast
uncertainty of deterministic predictions lead time

[Wilks, 2011]




What is a model?

Model = Simplified representation
of complex systems amenable to
analysis




What is an air quality model?

Model = Simplified representation
of complex systems amenable to
analysis

Entrainment and
Detrainment of pollutants

Wind Direction
- it

Temperature, Humidity, Pressure, ...

Inflow .
| Chemical & Aerosol )
| Processes —
Weather/Climate/Air Quality Models Sub-grid
processes =

= Simplified representation of the
complex Earth System

“




Modeling Applications

* Predicting past, current and future air quality/atmospheric composition

 Air Quality Forecasting

« Exploring the interactions between weather and atmospheric chemistry

« Studying the role of chemistry in climate and the feedback of climate on chemistry

« Understanding the biogeochemical processes that govern the composition of and changes to
the natural environment

» Aiding in the interpretation of observations
» Assessing the value of current and future observational systems

We need models to increase our understanding of atmospheric chemistry/air quality
and to develop tools to provide societal relevant information




NSF NCAR Atmospheric Chemistry Modeling Ecosystem

Understanding Air Quality and Examining the Urban/Cloud Global Scale Impacts of Atmospheric
Chemistry in Detail Resolving Chemistry
to Regional Scales
Chemical Box Models (BOXMOX) Global Chemical Transport Models
Column Models (SCAM) Regional Chemical Transport & Earth System Models
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Deterministic air quality forecasting system development
Delhi example




Delhi topography and population
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Major emission sources affecting Delhi

Anthropogenic emissions (All year) Crop residue burning (Spring and Fall)

» storms (Spring)
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08 Nov 2017: in Delhi (AQI = 999)

Indian medical association declared a public health emergency and called conditions
equivalent to smoking 50 cigarettes a day.

Delhi Chief Minister called the city a “Gas-chamber”!

Maximum PM, . concentration on this day reached 1500 ug/m3. WHO air quality guideline for
24-h average is 15 pg/ms.

A person on an average loses ~6.5 years of their life due to exposure to air pollution in Delhi.

..............



Government (Ministry of Earth Sciences), India Initiatives

Air Quality Monitoring Network (Delhi-NCR)
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Did Delhi residents get an early warning?

Daily averaged PM, ; in Delhi from 10 Oct to 19 Nov 2017 based on first 24 hours of forecast
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WRF-Chem based forecasting system could not predict the pollution event.




Race against time to develop a new AQEWS

. Dec 2017 ' Feb 2018 ' Mar-Sep 2018 | Oct 2018 . Jan 2019
. First NSF NCAR- . NSFNCAR - System . Operational . Operational
 IITM conversation | proposalsentfo : development . predictions . system
- 1IT™M . and testing . started af NSF . transitioned to
' Mar 2018 NCAR i [ITM
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Improved predictions of 2017 event

Daily averaged PM25 in Delhi from 10 Oct to 19 Nov 2017
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Mean bias reduction over the entire period: 86% [Kumar et al., 2020]




Overview of the Forecast Products







Forecasting Crop-residue burning influence in Delhi
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Empowering decision-makers!!

— & TheIndianEXPRESS

Delhi air pollution: NCR schools, colleges shut, construction at a halt till November 21
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Schools reopen after pollution break,
construction ban still on

The Supreme Court order issued last week had re-imposed the ban on construction activities in the NCR
[Ghude, Kumar et al., Nature, 2022] until further orders.




Probabilistic air quality forecasting system development
USA example




Ensemble design

Air Quality Modeling Process and Ensemble design

Conditions

Initial and Boundary

Meteorology
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« QOur ensemble design will
capture three  major
sources of uncertainties
in PM,, ; predictions.
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Higher PM2.5 mass concentrations over the
eastern United States.

Arw_p1 shows the highest concentrations in
most parts of the domain in January except for
some areas in the northeastern part of the
domain where arw_p2 shows the highest
concentrations.

PMZ2.5 mass concentrations decrease in April
and July relative to January especially over the
eastern United States and increase again in
October.

PM2.5 mass concentrations increase over the
western United States in July likely because of
the wildfires.




Changes in PM, ; due to Biogenic, Fire, and SOA perturbations
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Changes in PM, ; due to Anthropogenic emission perturbations
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» Anthropogenic emissions lead to the largest changes in PM2.5 across the CONUS.




Observations site over CONUS and EPA regions
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Model validation
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But Dynamical ensembles are very expensive and
sometime impractical for operations....




The Analog Ensemble (1)
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Figure adapted from Delle- Monache et al. (2013)



time

The Analog Ensemble (2)

Find set number of
analogs based on
certain predictors
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Figure adapted from Delle Monache et al. (2013)
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The Analog Ensemble (3)

Find set number of
analogs based on
certain predictors
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Figure adapted from Delle Monache et al. (2013)



The Analog Ensemble (4)

Find set number of
analogs based on
certain predictors
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The Analog Ensemble (5)
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Quantifying uncertainties in Air Quality Forecasts (AnEn)
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Determinis re found to be
very helpful in Delhi.

Ll

Probabilistic forecasts allow decision-makers evaluate the uncertainties and
understand their value in the decision-making process.

Thank You ! |
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