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O Governing Processes

O Experiments and Field Studies

O Modeling dispersion of emissions from
» Highways on flat terrain

» Highways with different configurations

= Roads in urban cores

1 Emission Factors
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Introducion

» Studies have shown that living near roadways is implicated in
adverse health effects. These studies include both short-term and
long-term  exposures (Health Effects Institute, 2010)-
NO,,CO,S0,, Particulate matter

> These studies coupled with the fact that over 10% of the US

population lives within 100 m from highways (Brugge, 2007) has
motivated field, wind tunnel and modeling studies to examine the
impact of highway emissions on near-road air quality.

Such studies have been conducted since the 1970s, but recent
health studies have added impetus to them.



Governing Processes

Boundary Layer Z
! e, =Emission Factor, g/m/vehicle

U =Wind Speed, m/s

o, =Turbulence Level, m/s

T = Traffic Flow Rate, vehicles/s

Concentration

Turbulence z, =Mixed Layer Height. m
d =Distance from Road Edge, m
W = Width of Road, m

h, =Height of Vehicle, m
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h = Height of plume
w = width of plume
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Field and Modeling Studies

Field and Laboratory Studies

> Dispersion of releases from sources close to the ground
> Green Glow, Prairie Grass (1956)
»  Project Sagebrush (2013)

> Field studies to understand road dispersion —GM tracer study (1980)- tracer released from 352
automobiles

>  New road field studies

Caltra;ns (Benson,1989), Raleigh study (Baldauf et al., 2008), Idaho Falls Study (2008, Finn et al.
2010

Models

EPA Highway Model (1970s)
CALINE Model (Benson, 1989)
RLINE (Snyder et al., 2013)
C-LINE (Barzyk et al, 2013
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https://www.noaa.inel.gov/projects/sagebrush/sagebrush.htm

Wind Tunnel Studies at the USEPA (Heist et al, 2009)

a b

i RLINE  Model, which is non-
. ’ regulatory option in AERMOD,
"""""""""""""""" includes methods to compute
concentrations associated  with
emissions from highways with and
without  noise barriers, and

lllllll

9 h | depressed highways.
YT e =
i i The RLINE model was developed
Ol T i using data from the wind tunnel
; : study, and the field study described
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https://www.cmascenter.org/r-line/
https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models

Wind Tunnel Studies at the USEPA (Heist et al, 2009)




Barrier Effects
Wind Tunnel Results (Heist et al, AE, 43, 5101-5111)
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4 SF, simultaneously released from two sources
J Concentrations measured at 56 receptors
1 Spanned neutral, unstable, and stable conditions



ldaho Falls Study (Finn et al., 2010)

Neutral

150

100

50

Unstable

Meteorological approach flow conditions at the non-barrier reference anemometer
at x = —16H, z = 3 m for the selected 15-min cases. P—G is the Pasquill—-Gifford
stability class determined by the Solar Radiation Delta-T (SRDT ) method ( EPA 2000).
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Test z/L Stability P-G WS WD u- H oy
(ms™") (deg) (ms') (Wm?) (deg)
2  —0312 Unstable B 14 201 029 2000 288
1 0016 Neutral D 55 219 055 734 114
3 0.048 Weakly stable D 3.6 209 035 541 8.7
5 0.379 Strongly stable F 16 203 012  -152 8.5

Slightly Stable 300
: . : 200+t -1
100} [
0
50 100 150 200 0
x [m]
= With Barrier

= Without Barrier

Variation of mean centerline concentrations
with distance from source with and without
the barrier. Concentration is normalized,
and distances are in m.



A field study to estimate the impact of noise barriers on mitigation
of near road air pollution

Ranga Rajan Thiruvenkatachar® - Yifan Ding' - David Pankratz' - Akula Venkatram'
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Fig.2 a Pictume of the 5k gas cylinder with the pressure mgulator,
thet electronic sokenoid (zreen and white box) that could be operated
from within the vehicle. and the mass flow controlier. b The SF; pas
from the mass flow controlker was looped into the vehicle exhaust

Fig.4 Upwind meteorodogical measurement site containing two 3-D
somic anemdame ers mounted 3 m znd 5 m above the ground



Modeling Approach

Fig. 1. Coordinate system used to calculate contribution of the point source at Y; to
concentrations at (X, Y.). The system x—y has the x-axis along the mean wind direc-
tion, which is at an angle # to the fixed X axis. The dotted lines represent the plume
originating from an elemental point source at (0, Y).

O Discrete vehicles replaced by a continuous line
source.

L Emission rate=Emission factor X Traffic flow rate

O Line source modeled as a set of point sources
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Reformulation of Plume Spreads for Flat Terrain
(Venkatram et al., 2013)

Stable Conditions Unstable Conditions
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Modeled
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Comparison of Performance of RLINE with those of other Models (Heist et al., 2013)
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Table 2

Model statistics comparison from all test days for the Idaho Falls tracer study.
Model FB NMSE R FAC2
CALINE4 0.42 1.94 0.76 0.59
AERMOD-V 0.38 1.26 0.84 0.59
AERMOD-A 0.32 1.25 0.82 0.59
ADMS 0.36 1.14 0.88 0.70
RLINE 0.23 0.96 0.85 0.73




Barrier Model (Schulte et al, 2014)

Wind Direction o . _
—> 1 Concentration is well mixed over the height

of the barrier, H
Barrier C) L,

N H\ [m
. Source D EW LW Uozbarrier(x) = U (zeff)aaz(x) +U (E) ti H

Concentration  Concentration is well mixed over the height
of the barrier, H




Evaluation of Barrier Model (Schulte et al, 2014)
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Tracer Study (Finn et al., 2010)



Plume is assumed to be mixed through é GG

the depression before it affects receptors




UCKR

Effects Related to Vegetative
Barriers

Plume that goes above has enhanced
dispersion, decreases concentration relative

‘ to flat terrain.
Plume going through is subject
_ ‘ to less turbulence and hence
less dispersion. Increases

concentration.

Combination of two effects can increase or decrease
concentrations depending on the porosity of vegetation and
micrometeorology, and pollutant deposition characteristics.




Effects of Buildings on Dispersion

Do transit oriented developments (TOD) with high building densities
increase the impact of vehicle emissions by reducing ventilation?
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Models for Effects of Buildings on Dispersion

Q Street emission rate

[ A
C, Surface concentration
C —_0 1+ a, C averaged over the street
s PBo, W h +¢,
1+-°2(1+a) _
H r ) C,  Roof concentration

W  Street width

Roof concentration, C,., | H  Building height

corresponds to flat terrain _

conditions a, AspectRatio (H/W)
o Average standard

Magnification~aspect ratio= a,= — deviation of vertical
w velocity fluctuations

xR

Street averaged OSPM ? Empirical constant

(Berkowicz, 2000) h, Initial vertical mixing




Evaluation of Buildings Effects Model
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Fig. 7. Sample UFP concentration time series from a building section surface monitor
used in the Los Angeles 8th St. measurements. The solid black line is the 10th
percentile baseline or background and the blue corresponds to the local contribution.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Local Contribution/Q [s m~2]

0.50 -

0.20 -
0.10 -

0.05 -

A P> <« o

v

Sg = 1.61
fact2 = 0.85
er = 0.5

0.02

0.02

0.05 0.10 0.20 0.50
VDMgyrfacelQ [ m=2]




Computing Effective Hel
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Resuspended Dust, PM10, AP-42 Model
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[ Vehicle speeds less than 25 mph
O 65% of the average vehicle weights over 3 tons
1 Mean silt loading of over 20 g/VMT

Data used to formulate the AP-42 model are not relevant to
estimating emissions of PM from high traffic roads.
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Mobile Sampling Platform for Highways

Measurement of  silt Measurement of PM emission Measurement of micrometeorology
loading on active roads factors using mobile monitors using mobile monitor

23






Dust Collection System

Spring-loaded arm keeps brush on the road Silt collected using sequential sieving machine
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Field Studies ,
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PM Emission Factor Models

Two models
J AP-42 Model

1 Mechanistic model Work Done=d
Kinetic Energy of particles=EF.d v’

Ry " dEF TV

uwd
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Measured EF mg/VMT
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Research Gaps and Future Directions

> Models for dispersion from different road configurations-elevated,
depressed roads-need Iimprovement and evaluation with
observations

> Models for building effects require more evaluation.

» Models overestimate concentrations under low wind speeds
(Askariyeh et al., 2017). Need methods to account for wind
meandering under these conditions.

> Need methods to account for

Conversion of NOx to NO,

Impact of porous vegetative barriers

Estimating “edge” effect of roadside barriers

Estimating micrometeorological model inputs in urban areas



Conclusions

» Solid barrier always leads to reduction of near-road concentrations relative to
those without barrier.

» The addition of vegetation enhances the effect of the solid barrier. The
additional effect is relatively small, and can sometimes reduce the mitigating
effect of the solid barrier at high wind speeds.

»  The impact of solid barriers, upwind and downwind, as well as depressed
roads can be incorporated into current flat terrain models: EPA's RLINE

model: RLINE MODELDESCRIPTION 5-23-13.PDF,
https://www.cmascenter.org/r-line/

» Vegetation effects have been incorporated into model, but needs further
development.



https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=518602
https://www.cmascenter.org/r-line/
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Take-Home Messages

» Current models for dispersion of emissions from highways with
and without barriers provide adequate estimates of concentrations
associated with highway emissions. These models have been
incorporated in frameworks to examine the impact of traffic
scenarios (Vallamsundar et al., 2016). New version of AERMOD
includes a non-regulatory option for RLINE application.

» Data sets from field and wind tunnel studies are available for
development and evaluation of highway dispersion models.

» Street canyons between tall buildings magnify concentrations that
would occur in the absence of buildings. The magnification
depends on the ratio of the effective height to width of the street.
Available dispersion models do not account or building effects.
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List of Abbreviations

AERMOD- AMS/EPA Regulatory Model

AMS- American Meteorological Society
CFD-Computational Fluid Dynamics

OSPNM- Operational Street Pollution Model

RLINE- Research Line Source Dispersion Model

USEPA- United States Environmental Protection Agency



https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models
https://envs.au.dk/en/research-areas/air-pollution-emissions-and-effects/the-monitoring-program/air-pollution-models/ospm/
https://www.cmascenter.org/r-line/
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Estimating Emissions from Lagoons in Southern California
Dairy

Valerie Carranza, Faraz Ahangar, Ranga Rajan
Thiruvenkatachari, Francesca Hopkins, Akula Venkatram
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Approach

Estimates from dispersion model are fitted +to
measurements to estimate emissions

Inputs are roughness length, surface friction velocity,
Monin-Obukhov length, wind speed at 3 m, standard
deviations of turbulent velocities. Obtained by processing
sonic anemometer measurements

Dispersion from area source computed by modeling the area
as a set of line sources perpendicular to the wind direction.
Number of line sources determined by convergence
criterion set for integral over line sources~ 500 lines

34



Es’ri'rng Emissions

Minimize the sum of the squares of residuals between
model estimates and measurements

2
: : 2 :
5= Z(Crlneas - Cpl)r'ed) - Z(Cr;eas - (Cb T ZEJDJIJ)
i J J

i = Measurement index

j = Sourceindex, 1-4

E. = Emission from each source

D,; = Modeled concentration from source j to measurement i

assuming unit emission rate
C, = Background Concentration

35
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CH4 concentration, ppm
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Inferred CH, Emissions

2.3 2.0 2.8 0.35
42 (8) 5.9 75 1.65
55 (10) 33 78 0.82
92 (17) 62 121 0.64

204 (37) 165 243 0.38

The 95% confidence intervals for the emission rates are computed through a version of
bootstrapping: the residuals €; are added randomly to the model estimates to create 1000 sets
pseudo observations, which are then fitted to the measurements to create a distribution of emission

rates. 38
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